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Climate change may impact long-term wind power generation
Data from MPI-ESM1-2-HR
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Which climate model data should we choose
for multi-decadal wind power forecasts?
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Climate model choice matters

Higher spatial resolution ⇏ better prediction

April 30, 2025 Machine Learning in Sustainable Energy Systems - University of Tübingen, Germany 2/8



Climate model data differs
And not just in spatial resolution...
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• Data sources
• 10 GCMs from CMIP6
• RCMs from CORDEX with

CMIP5 global boundary
models

• ERA5 as reference

• Historical runs

• Continental Europe domain
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Which climate data best represents wind speeds?
Wind power depends non-linearly on wind speed — the full distribution matters, not just the average.
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KDEs of wind speeds (A) and the corresponding generated wind power density (B) for all time steps and grid points.
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Evaluating wind speed distributions
Wind power depends non-linearly on wind speed — the full distribution matters, not just the average.

Extract wind speeds over Europe
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Evaluate wind speed distributions

Predict power output per location
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Evaluating wind speed distributions
Wind power depends non-linearly on wind speed — the full distribution matters, not just the average.

Extract wind speeds over Europe

Evaluate wind speed distributions

Predict power output per location

Sum over all power predictions
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Trends with spatial resolution
The maximum value simulated increases with spatial resolution, all other trends are not significant
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Regression of distributional metrics (A & B) and maximum wind speeds (C) with grid resolution.
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Choice of GCM and RCM is influential
Higher spatial resolution ⇏ better prediction
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wind speed → cumulative wind power → average over all grid cells → relative to ERA5
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Choose your model wisely!
Climate data selection for multi-decadal wind power forecasts (Morelli et al., 2025)

• A higher climate model resolution does not imply
better alignment with past reanalysis data.

• In regional climate modeling, model choice is more
influential than boundary values.

• Higher spatial resolution can be valuable once a
suitable climate model is identified.

Feel free to reach out:

luca.schmidt@uni-tuebingen.de
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