Background & Objectives

- A limited-area model (LAM) sometimes degrades the large-scale structures compared to a global model (GM)^[1].
- To mitigate the large-scale errors, large-scale blending (LSB) has been used in several operational NWP centers^[2].
- While flow-dependent background error plays an important role in convective-scale DA, traditional LSB methods often ignore the flowdependent error of GM large-scales.

This study proposes a novel LSB method within an ensemble variational (EnVar) framework to clarify the impact of flow dependency on LSB.

Variational large-scale blending methods

3DVar cost function with augmented GM information^[1]

$J(\mathbf{x}) =$	$=\frac{1}{2}$	(y (<i>H</i> ₁ (<i>x</i>)	$\mathbf{r}^{\mathrm{b}} - \mathbf{x} \\ - H(\mathbf{x}) \\ \mathbf{B}) - H_2(\mathbf{x})$	\mathbf{x})	V -1	x^{b} y - L $H_1(x^{B})$	-x H(x) -H) I ₂ (x)	$ \begin{pmatrix} x^{b}, x^{B} : b \\ y : o \\ H : o \\ H_{1} : O \\ H_{2} : L $	ackgroun bservatio bservatio M ↦ trun AM ↦ trur
$\mathbf{W} =$	$\left\{ \boldsymbol{\varepsilon}^{\mathrm{b}} \right\}$	$(\boldsymbol{\varepsilon}^{b})^{T}\rangle$ $(\boldsymbol{\varepsilon}^{b})^{T}\rangle$	$\langle \boldsymbol{\varepsilon}^{\mathrm{o}}(\boldsymbol{\varepsilon}^{\mathrm{o}})^{\mathrm{T}} \rangle$ $\langle \boldsymbol{\varepsilon}^{\mathrm{o}}(\boldsymbol{\varepsilon}^{\mathrm{o}})^{\mathrm{T}} \rangle$ $\langle \boldsymbol{\varepsilon}^{\mathrm{v}}(\boldsymbol{\varepsilon}^{\mathrm{o}})^{\mathrm{T}} \rangle$	$\left\langle \boldsymbol{\varepsilon}^{\mathbf{b}}\right\rangle \left\langle \boldsymbol{\varepsilon}^{\mathbf{b}}\right\rangle \\ \left\langle \boldsymbol{\varepsilon}^{\mathbf{v}}\right\rangle \left\langle \boldsymbol{\varepsilon}^{$	$\left[\boldsymbol{\varepsilon}^{\mathrm{v}} \right]^{\mathrm{T}} $ $\left[\boldsymbol{\varepsilon}^{\mathrm{v}} \right]^{\mathrm{T}} $ $\left[\boldsymbol{\varepsilon}^{\mathrm{v}} \right]^{\mathrm{T}} $	$\blacksquare \begin{bmatrix} \mathbf{B} \\ 0 \\ 0 \end{bmatrix}$	0 R 0	0 0 V	$\varepsilon^{b} = x^{b} - x$ $\varepsilon^{o} = y - H$ $\varepsilon^{v} = H_{1}(x^{B})$	$\begin{array}{c} \mathbf{c}^{\mathrm{t}} & \mathbf{b}_{\mathrm{t}} \\ \mathbf{b}_{\mathrm{t}} \\ \mathbf{c}(\mathbf{x}^{\mathrm{t}}) & \mathbf{o}_{\mathrm{t}} \\ \mathbf{b}_{\mathrm{t}} \\ \mathbf{c}(\mathbf{x}^{\mathrm{t}}) & \mathbf{o}_{\mathrm{t}} \\ \mathbf{c}_{\mathrm{t}} \\ \mathbf{c}_{\mathrm{t}}$

ignore based on uncorrelated assumptions

• ignore based on error statistics^[1]

Nested 3DVar ^[1, 3] : B	(\mathbf{L}^{b}) and $\mathbf{V}(\mathbf{L}^{v})$ are	e empirically
$J(\chi) = \frac{1}{2} \chi ^2 + \frac{1}{2} \chi ^2$	$\frac{1}{2} \ \mathbf{d}^{\mathrm{o}} - \mathbf{H}\mathbf{L}^{\mathrm{b}}\boldsymbol{\chi}\ _{\mathbf{R}^{-1}}^{2}$	+ $\frac{1}{2} \ (\mathbf{L}^{v})^{-1} ($
$\mathbf{B} = \mathbf{L}^{\mathbf{b}} (\mathbf{L}^{\mathbf{b}})^{\mathrm{T}}$		$\mathbf{L} = \mathbf{L}^{\mathrm{v}}(\mathbf{L}^{\mathrm{v}})$
$x = x^{\mathrm{b}} + \mathbf{L}^{\mathrm{b}}\chi$	$\mathbf{d}^{\mathrm{o}} = \mathbf{y} - H(\mathbf{x}^{\mathrm{b}})$	$\mathbf{d}^{\mathrm{v}} = H_1(\mathbf{x}^{\mathrm{H}})$
Control variable transformation for efficient minimization ^[3]	Innovation	Large-scal

Nested EnVar: $P^b(X^b)$ and $P^v(Z^v)$ are dynamically estimated. J(w) = $\mathbf{X}^{\mathrm{b}} = \frac{1}{\sqrt{K-1}} [\mathbf{x}_{k}^{\mathrm{b}} - \overline{\mathbf{x}^{\mathrm{b}}}]_{k=1,\dots,K} \quad \mathbf{Y}^{\mathrm{b}} = \frac{1}{\sqrt{K-1}} [H(\mathbf{x}_{k}^{\mathrm{b}}) - \overline{H(\mathbf{x}^{\mathrm{b}})}]_{k=1,\dots,K}$ $\mathbf{Z}^{\mathrm{v}} = \frac{1}{\sqrt{K-1}} [H_1]$ $\mathbf{P}^{\mathrm{b}} = \mathbf{X}^{\mathrm{b}} (\mathbf{X}^{\mathrm{b}})^{\mathrm{T}}$ $\mathbf{P}^{\mathrm{v}} = \mathbf{Z}^{\mathrm{v}}(\mathbf{Z}^{\mathrm{v}})^{\mathrm{T}}$ *K*: Ensemble size $x = \overline{x^{\mathrm{b}}} + \mathbf{X}^{\mathrm{b}} \mathbf{w}$ $\mathbf{Z}^{\mathrm{b}} = \frac{1}{\sqrt{K-1}} [H_2]$ Ensemble update^[4] $\mathbf{X}^{a} = \mathbf{X}^{b} [\nabla_{w}^{2} J]^{-\frac{1}{2}} \nabla_{w}^{2} J = \mathbf{I} + (\mathbf{Y}^{b})^{T} \mathbf{R}^{-1} \mathbf{Y}^{b} + [(\mathbf{Z}^{v})^{T} \mathbf{R}^{-1} \mathbf{Y}^{b}]$

- [1] Guided and Fischer 2008: QJRMS, 134, 723–735.
- [2] Milan et al. 2023: QJRMS, 149, 2067–2090.
- [3] Dahlgren and Gustafsson 2012: Tellus A, 64, 15836.
- [4] Zupanski 2005: MWR, 133, 1710–1726.
- [5] Lorenz 2005: JAS, 62, 1574–1587.
- [6] Kretschmer et al. 2015: *Tellus A*, 67, 26495.
- [7] Davies 1976: QJRMS, 102, 405–418. [8] Denis et al. 2002: *MWR*, 130, 1812–1829. [9] Sakov and Oke 2008: *Tellus A*, 60, 361–371. [10] Farchi and Bocquet 2019: FAMS, 5(3).
- [11] Whitaker and Hamill 2012: MWR, 140, 3078–3089.

nds of LAM and GM on operator cated LAM ncated LAM

ackground error

bservation error

) large-scale GM error

$$[\mathbf{z}_{2}(\mathbf{x}_{k}^{b}) - \overline{H_{2}(\mathbf{x}^{b})}]_{k=1,\dots,K}$$
$$[\mathbf{Z}^{b}]^{T}(\mathbf{Z}^{v})^{\dagger}\mathbf{Z}^{b}$$

Flow-dependent large-scale blending for limited-area ensemble assimilation

Saori Nakashita¹, Takeshi Enomoto¹ 1. Disaster Prevention Research Institute, Kyoto University, Japan

nakashita@dpac.dpri.kyoto-u.ac.jp

Nested EnVar has the potential to enhance the effectiveness of high-resolution LAM DA for spatially localized observations.

Time averaged analysis RMSE of nested Lorenz OSSE **Degrade** or **improve** relative to No LAM DA (0.334)

	observation (points)	3DVar	EnVar	BLSB+ 3DVar	BLSB+ EnVar	Nested 3DVar	<u>Nes</u> <u>En\</u>
	uniform (7)	0.203	0.014	0.048	-0.040	-0.007	-0.0
	dense, left (30)	2.95	0.328	-0.003	-0.039	-0.011	-0.0
	dense, center (30)	0.99	0.037	-0.007	-0.049	-0.021	-0.0
	dense, right (30)	3.00	0.209	-0.006	-0.043	-0.021	-0.0
+	dense, moving (30)	0.318	-0.019	-0.005	-0.051	-0.023	-0.0

Snapshot of stream function in the LAM domain at the final cycle of nested QG OSSE

NP1.1 EGU25-16805 X3.41 Attendance: 28 Apr, 10:45–12:30

Time averaged analysis error spectra with dense moving observations

OSSE 1: nested Lorenz system^[5, 6]

Nature: Lorenz III (2π , $\Delta x_N = 2\pi/960$) GM: Lorenz II (2π , $\Delta x_G = 4\Delta x_N$)

LAM: Lorenz III ($\pi/2$, $\Delta x_L = \Delta x_N$)

- LBC: Davies^[7] relaxation with 10-grid sponge regions
- Lorenz II & III are modified to contain multiple wavelengths.
- EnVar: 80 member without localization
- *H*: linear, $\mathbf{R} = \mathbf{I}$
- $H_{1,2}$: truncation at k=12 with DCT^[8]

OSSE 2: nested QG system

with double-gyre wind forcing^[9]

$$\partial_t q = -\partial_x \psi - \epsilon J(\psi)$$
$$q = \nabla^2 \psi - F \psi$$

Domain: $0 \le x, y \le 1$

Nature: $\Delta x_N = \Delta y_N = \frac{1}{128}$

GM: $\Delta x_G = \Delta y_G = 2\Delta x_N$

LAM: $\Delta x_L = \Delta y_L = \Delta x_N$,

 $0.15 \le x, y \le 0.65$

LBC: Davies relaxation with exponential smoothing

Summary & Discussion

- large-scale degradation.
- of the ensemble spread.

Reference

DOI:10.16993/tellusa.4089

JP24H00021, JP24H02226.

Dynamical blending of Nested EnVar improves analysis across scales by reducing large-scale errors while retaining DA effects on middle scales when dealing with dense and unevenly distributed observations. Simultaneous assimilation of large-scale and observational information by variational LSB is more beneficial than background LSB with severe

 Scale-dependent covariance inflation should be introduced for more effective performance of Nested EnVar to mitigate the underestimation

