

Scenario analysis on the impact of green infrastructure on urban pluvial flood mitigation

2) METHODS

Study area

- Berlin, Germany
- 3.3 km²
- Heavily sealed

Oranienstraße, Berlin.

Rain scenarios

- 1h duration, Euler-II distribution
- KOSTRA [2] return periods: 1, 5, 10, 20, 50, 100 years
- Extreme: 100 mm

Study area in Friedrichshain/Kreuzberg, Berlin (base map OpenStreetMap).

- (15, 25, 30, 35, 43, 49 mm)

Green and grey infrastructure scenarios

- Bio retention (max = 10%, med = 5%)
- Green roof (max = all buildings, med = 50% buildings)
- Pervious pavement (max = 50% roads, med = 25% roads)
- Combined (green roof max + bio retention max, green roof max + pervious pavement med)
- Gully (street drainage 16 mm/h)

The model chain

Hydrology: Storm Water Management Model

Urban runoff generation based on the SCS Curve Number method and the modules for green infrastructure

Hydrodynamics: TELEMAC-2D

Surface runoff concentration and resulting flood water depths and flow velocities [3]

Building damage: Flood Damage Estimation Tool

A recursive partitioning tool developed with survey data representative of building damage caused by pluvial floods

¹ Institute of Environmental Science and Geography, University of Potsdam

² Chair of Hydraulic Engineering, Technical University of Munich

Sophia Dobkowitz^{1*}, Leon Frederik De Vos², Deva Charan Jarajapu¹, Sarah Lindenlaub¹, Guilherme Samprogna Mohor¹, Axel Bronstert¹

1) MOTIVATION

- 30 40 combined sewer overflows per year
- Green infrastructure measures can reduce urban flood risk by increasing infiltration, water storage and evapotranspiration
- Comparability in the existing literature is limited [1]
- How much flood mitigation can we achieve?
- Use different mitigation indices: runoff, flood depth and building damage
- How does the impact respond to increasing rain totals?
- Limited urban space: what about space efficiency?

3) RESULTS

Comparing runoff, area with flood depth exceeding 10 cm and percentage of damaged building for the base scenario, green and grey infrastructure combined with different rainfall events.

[1] Dobkowitz et al. (2025). Water retention by green infrastructure to mitigate urban flooding: a meta-analysis. Urban Water Journal. [2] DWD (2020) Starkregenkatalog des Deutschen Wetterdienstes (www.openko.de). [3] De Vos et al. (2024). Establishing Improved Modeling Practices of Segment-Tailored Boundary Conditions for Pluvial Urban Floods. Water.

Conceptual drawings and exemplary photos from Berlin showing a) bio retention, b) green roof and c) pervious pavement

4) CONCLUSIONS

The greener, the better

- all 3 modelling steps
- gully scenario

Nonlinear propagation of mitigation impact

building damage at 25 mm

Relative impact decreases with rain total

- total

Space efficiency vs. maintaining usability

- space

> The combined scenario green roof max + bio retention max occupies with 36% the highest percentage of the study area and achieves the highest absolute and relative reductions at

 \succ Especially for the higher rain totals, the combination scenarios show the best mitigation

> Most of the green infrastructure scenarios outperform the

 \succ While the absolute runoff reduction is highest at the 100 mm event, flood depth reduced the most at 49 mm and

> This applies to all green infrastructure scenarios, however the level and its steepness differ among them

> Both bio retention scenarios can compete with the combined scenarios for the smallest events, however the relative reduction decreases strongly with increasing rain

 \succ Bio retention shows the highest mitigation per m² \succ Green roofs and pervious pavement do not require extra

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

^{*} sophia.dobkowitz@uni-potsdam.de