
Significant Error Reduction:
The XGBoost model integrating land surface variables substantially re-
duced overall precipitation estimation errors (e.g., mean RMSE reduced 
by 26.1%, MAE also lowered). The method was especially effective at 
correcting overestimations, though less successful with underestima-
tions.

Key Contributing Factors : 
Explainable AI (SHAP) identified Soil Water content, Evaporation/Run-
off, and Temperature variables as the key LSVs improving precipitation 
estimates. Given the Earth's dynamic systems, future calibration should 
consider incorporating additional variables specific to local conditions.

Spatially Clustered Importance: 
Land surface variables importance varies regionally, showing distinct 
patterns linked to local land-surface processes influencing precipitation 
improvements.

Stable Temporal Variation: 
Key land surface variables importance remained relatively stable across 
seasons (2022), suggesting their influence is consistent over time.

Variable Interactions Noted:
SHAP value variations across model runs suggest complex land surface 
variables interactions requiring further investigation to fully understand 
these relationships.
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3. Results and Contributing Factors Analysis
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XGB: 0.115 mm/hr 

Figure 1. Global distribution of RMSE improvement (%) for precipitation estimates. Blue areas indicate regions with improved RMSE after calibration, while red areas show deg-
radation. The map covers latitudes from 60°S to 60°N and longitudes from 180°W to 180°E, demonstrating widespread improvement across most land regions, especially in 
South America, Sub-Saharan Africa, and Australia.

Figure 2. Histogram of RMSE and MAE for IR-based (gray) and XGBoost-corrected (blue) precipitation estimates, using microwave (MW) observations as the reference. The 
distribution illustrates a leftward shift for the XGBoost results, indicating improved accuracy compared to the original IR estimates.

Figure 3. Violin plot of SHAP value-based maximum contributions by variable group. Each distribution represents how dominant a variable group is in contributing to the final 
precipitation prediction. The top contributing variables include skin reservoir content, surface runoff, and 2m dewpoint temperature, reflecting the critical role of surface and at-
mospheric water-related processes.

Top 10 individual land surface variables:
1. Skin reservoir content
2. Surface runoff
3. 2m dewpoint temperature
4. Surface thermal radiation downwards
5. Volumetric soil water layer 1

6. Soil temperature level 2
7. Evaporation from the top of canopy
8. Surface net thermal radiation
9. Surface net solar radiation
10. Soil temperature level 1

Figure 4. Histogram of prediction error (mm/h) for IR-based (gray) and XGBoost-cor-
rected (blue) precipitation estimates, using microwave (MW) data as the ground truth. 
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Model predicts IR-error (IR - MW), where MW is the ground truth.
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Research Questions:

Infrared observations (Passive):
# Geostationary satellites
# Broad spatio-temporal coverage 
# Weak relationship between cloud 
top temperatures and precipitation

Microwave observations (Active):
# Low-orbit satellites
# Limited spatio-temporal coverage 
# Accurate precipitation estimates

1. Can Land Surface Variables enhance IR precipitation estimates?
2. What are the contributions of different land surface variables at 
spatial and temporal scales?
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