Combining field data and spatially distributed modelling

to understand the effects of land cover, soil degradation, and climate variability on the hydrological response of a meso-scale catchment in Eastern Madagascar

University of Chand Logeschool WAGENINGEN UNIVERSITY & RESEARCH UNIVERSITY & RESEARCH SCION KINGS CGUGENERAL

B.W. Zwartendijk^{1,2}, H.J. van Meerveld³,
 L.A. Bruijnzeel⁴, S. Batenburg², C.P. Ghimire⁵,
 H. Leistert⁶, M. Weiler⁶, and A.J. Teuling¹
 bob.zwartendijk@wur.nl

Shifting cultivation is the dominant agricultural system in the tropics

- Leading to a mosaic of land uses
- Repeated burning decreases soil biodiversity, soil organic carbon content, rooting depth and density, and the infiltration capacity

- >40% of Madagascar's forest cover was lost in the past 60 years mainly by shifting cultivation (Harper et al., 2007).
- Ankeniheny Zahamena Corridor: a well studied and highly biodiverse area where conservation interventions aim to reduce forest clearance and promote active reforestation (Portela et al., 2012),

Runoff processes

Small rainfall event and/or dry antecedent conditions:

- Only rainfall on stream, wetlands and rice paddies reaches catchment outlet as event water;
- No to minor perched water tables on the hillslopes.

Runoff processes

Larger rainfall events and/or dry to moist antecedent conditions:

- Some perched water tables on the hillslopes;
- Saturation excess overland flow at degraded sites and in the riparian zone;
- Stream flow dominated by preevent water.

Runoff processes

Very large rainfall event: and/or wet antecedent conditions:

- A large part of catchment is hydrologically connected to stream via perched water tables;
- Saturation excess overland flow also from upslope areas;
- Event-water dominates stream flow.

Research questions

- What are the effects on land cover and soil degradation to stormflow and groundwater recharge?
- Will large scale afforestation decrease stormflow and enhance groundwater recharge?
- Does afforestation on foot slopes have a larger impact than afforestation on upslope areas?
- To what extent does climate variability affect stormflow and groundwater recharge?

Hydrological model

RoGeR Model, Runoff Generation Processes (Steinbrich et al. 2016);

Model input:

- **DEM** (12x12m TANDEM);
- Climate (rainfall, potential evapotranspiration and temperature);
- Land cover and vegetation parameters;
- Soil physical parameters (K_{sat}, porosity, moisture content at field capacity, etc.).
- Parameters based on fieldwork and literature values (Zwartendijk et al. 2020, 2023, in preparation, Ghimire et al. 2017, 2018, van Meerveld et al. 2018, Steinbrich et al. 2016).

Rainfall scenarios

- 10-minute measured rainfall in 2015-2016 1314 mm
 - Applying delta-change method to compose rainfall time series with higher or lower rainfall amounts.

•

	Scenario	Factor [-]	Annual rainfall [mm]
ALL N	Dry	0.8	1051
	Measured		1314
+ 29	Normal	1.2	1577
	Wet	1.4	1840
E IA	Very wet	1.6	2102

Modelled annual stormflow

Legend for water balance components

minimum value median value maximum value

Scenario		Stormflow [mm]				
1953	12	40	83	139	219	
1973	22	55	104	166	250	
2010	42	92	162	244	345	
2017-2019	45	98	172	258	361	
2017-2019 + Up slope aff.	42	92	163	245	347	
Foot slope aff.	39	90	161	243	346	
2050, only degradation	46	100	175	261	364	
2050, deg. + deforest.	49	104	181	270	373	

Modelled hydrographs

Modelled annual water balance components

Legend for water balance components

minimum value median value maximum value

Scenario		Storn	nflow	[mm]
1953	12	40	83	139	219
1973	22	55	104	166	250
2010	42	92	162	244	345
2017-2019	45	98	172	258	361
2017-2019 + Up slope aff.	42	92	163	245	347
Foot slope aff.	39	90	161	243	346
2050, only degradation	46	100	175	261	364
2050, deg. + deforest.	49	104	181	270	373

Annua 1051 r	al raint nm	ainfall 1		ainfall		Annual rainfall 1051 mm			

Actual evapotranspiration [mm]							
1036	1136	1207	1264	1320			
987	1081	1151	1208	1260			
868	953	1023	1081	1127			
838	919	988	1046	1091			
858	946	1018	1079	1127			
858	946	1018	1078	1126			
830	912	981	1039	1083			
801	880	947	1005	1046			

2102mm

Modelled annual water balance components

Legend for water balance components

minimum value median value maximum value

Scenario		Storn	nflow	[mm]
1953	12	40	83	139	219
1973	22	55	104	166	250
2010	42	92	162	244	345
2017-2019	45	98	172	258	361
2017-2019 + Up slope aff.	42	92	163	245	347
Foot slope aff.	39	90	161	243	346
2050, only degradation	46	100	175	261	364
2050, deg. + deforest.	49	104	181	270	373

Actual								
evapotranspiration [mm]								
1136	1207	1264	1320					
1081	1151	1208	1260					
953	1023	1081	1127					
919	988	1046	1091					
946	1018	1079	1127					
946	1018	1078	1126					
912	981	1039	1083					
880	947	1005	1046					
	otran 1136 1081 953 919 946 946 946 912 880	otranspira 1136 1207 1081 1151 953 1023 919 988 946 1018 946 1018 912 981	Align and a series of the seri					

Annual rainfall

1051 mm

Asters

Deep	Deep percolation [mm]								
260	368	487	605	700					

Deep nerestation [mm]

200	300	407	005	700
268	377	493	607	705
288	394	496	599	698
296	403	503	605	706
285	390	489	592	688
288	392	492	594	690
301	407	507	610	711
311	419	518	621	726

2102mm

Conclusion & outlook (1/2)

- Rainfall is the dominant factor affecting annual runoff
 - but landcover affects peak flows.
- Land degradation at the examined scale had a major effect on stormflow amount and evapotranspiration, but surprisingly little effect on deep percolation (dry-season baseflows).
- Reforesting degraded soils:
 - reduces stormflow amounts and groundwater recharge
 - but also increases evapotranspiration.
- Differences in hydrological impacts of reforesting foot-slopes or upslope areas are **negligible** at the meso-scale.
 - Locally, foot-slope reforestation enhances deep percolation by re-infiltration of overland flow.

Conclusion & outlook (2/2)

- Working on realistic future land cover scenarios with our Malagasy partners
- We expect that coppiced and burned Eucalypt plantations for charcoal production are potentially a larger threat than shifting cultivation because of their deep water uptake and associated potential decrease in deep percolation and dry season flows.
- Long term observations of rainfall and streamflow are needed for sub-catchments to distinguish climatic and land cover effects on hydrological response.

Combining field data and spatially distributed modelling

University of nho

to understand the effects of land cover, soil degradation, and climate variability on the hydrological response of a meso-scale catchment in Eastern Madagascar

¹HWM, Wageningen University & Research, Wageningen, The Netherlands
 ²Inholland University of Applied Sciences, Alkmaar, The Netherlands
 ³Department of Geography, University of Zürich, Switzerland
 ⁴Department of Geography, King's College London, United Kingdom
 ⁵SCION, Ecology and Environment, Christchurch 8011, New Zealand
 ⁶Hydrology, Faculty of Environment and Natural Resources, University of EGU, SSS2.3 2025 May 2nd

References

- Ghimire, C.P., Bruijnzeel, LA., Lubczynski, M.W., Ravelona, M., Zwartendijk, B.W., & van Meerveld, H.J. (2017). Measurement and modelling of rainfall interception by two differently aged secondary forests in upland Eastern Madagascar. Journal of Hydrology, 545, 212–225. doi: http://dx.doi.org/10.1016/j.jhydrol.2016.10.032
- Ghimire, C.P., Bruijnzeel, L.A., Lubczynski, M.W., Zwartendijk, B.W., Odongo, V.O., Ravelona, M., & van Meerveld, H.J. (2018). Transpiration and stomatal conductance in a young secondary tropical montane forest: contrasts between native trees and invasive understorey shrubs. Tree Physiology, 38, 1053–1070, https://doi.org/10.1093/treephys/tpy004.
- Harper, G., Steininger, M., Tucker, C., Juhn, D., and Hawkins, F. (2007). Fifty years of deforestation and forest fragmentation in Madagascar. Environmental Conservation, 34(4), 325–333.
- Hewson, J., Razafimanahaka, J. H., Wright, T. M., Mandimbiniaina, R., Mulligan, M., Jones, J. P., ... Harvey, C. A. (2018). Land Change Modelling to Inform Strategic Decisions on Forest Cover and CO2 Emissions in Eastern Madagascar. Environmental Conservation, 46(1), 25–33. doi:10.1017/s0376892918000358
- Portela, R., Nunes, P., Onofri, L., Villa, F., Shepard, A., and Lange, G. (2012). Assessing and Valuing cosystem Services in Ankeniheny-Zahamena Corridor (CAZ), Madagascar: A Demonstration Case Study for the Wealth Accounting and the Valuation of Ecosystem Services (WAVES) Global Partnership, 56. <u>https://www.wavespartnership.org/sites/waves/files/images/WAVES_Madagascar_Report.pdf</u>. Last visited: 17/08/2016
- Steinbrich, A., Leistert, H. & Weiler, M. Model-based quantification of runoff generation processes at high spatial and temporal resolution. Environ Earth Sci 75, 1423 (2016). <u>https://doi.org/10.1007/s12665-016-6234-9</u>
- Steinbrich, A., Leistert, H., Weiler, M. (2021). RoGeR ein bodenhydrologisches Modell f
 ür die Beantwortung einer Vielzahl hydrologischer Fragen. In Korrespondenz Wasserwirtschaft, 14. Jahrgang, Heft Nr. 2, Feb-2021. https://doi.org/10.3243/kwe2021.02.004
- van Meerveld, HJ(I.), Jones, JPG, Ghimire, CP, et al. Forest regeneration can positively contribute to local hydrological ecosystem services: Implications for forest landscape restoration. J Appl Ecol. 2021; 58: 755–765. <u>https://doi.org/10.1111/1365-2664.13836</u>
- Zwartendijk, B. W., van Meerveld, H. J., Ghimire, C. P., Bruijnzeel, L.A., Ravelona, M., & Jones, J. P. G. (2017). Rebuilding soil hydrological functioning after swidden agriculture in eastern Madagascar. Agriculture, Ecosystems & Environment, 239, 101–111. <u>https://doi.org/10.1016/j.agee.2017.01.002</u>
- Zwartendijk, B.W., van Meerveld, H.J., Ghimire, C.P., Ravelona, M., Lahitiana, J., and Bruijnzeel, L.A. (2020a). Soil water- and overland flow dynamics in a tropical catchment subject to long-term slash-and-burn agriculture. Journal of Hydrology, 582, 124287, https://doi.org/10.1016/j.jhydrol.2019.124287.
- Zwartendijk, B.W., Ghimire, C.P., Ravelona, M., Lahitiana, J., and van Meerveld, H.J. (2020b). Soil hydrological characteristics for three areas in the Corridor Ankeniheny-Zahamena (CAZ), Madagascar. NERC Environmental Information Data Centre. <u>https://doi.org/10.5285/7987c6d4-973d-436d-a13b-c52997d0bce5</u>
- Zwartendijk, B. W., van Meerveld, H. J., Teuling, A. J., Ghimire, C. P., & Bruijnzeel, L. A. (2023). Rainfall-runoff responses and hillslope moisture thresholds for an upland tropical catchment in Eastern Madagascar subject to long-term slash-and-burn practices. Hydrological Processes, 37(8), e14937. <u>https://doi.org/10.1002/hyp.14937</u>

Acknowledgements

Bob Zwartendijk acknowledges financial support from the Dutch Research Council (NWO) (Grant no. 023.016.033).

Land cover imagery and land cover scenario's

- 1. 1953
- 2. 1973
- 3. 2010
- 4. 2017-2019
- 5. 2017-2019 + Upslope afforestation
- 6. 2017-2019 + Foot slope afforestation
- 7. 2050, 2017-2019 + degradation
- 8. 2050, 2017-2019 + degradation and deforestation

- Forest and forest loss: 1953, 1973, 1990, 2000, 2010, 2015, 2017 (Vieilledent et al. 2018)(30x30m);
- ESA ECCL Land cover 1992-2015 (300x300m);
- ESA Worldcover 2019 (10x10m);
- Estimated deforestation rate of 1.08% per year (Hewson et al. 2018).
- Theoretical afforestation on 20% of deforested areas at first order catchments without remnant forests.

Land cover imagery to land cover scenario's

- 1. 1953
- 2. 1973
- 3. 2010
- 4. 2017-2019
- 5. 2017-2019 + Upslope forestation
- 6. 2017-2019 + Foot slope forestation
- 7. 2050, 2017-2019 + degradation
- 8. 2050, 2017-2019 + degradation and deforestation

(se	ecor	idary) mature fo		
	tre	e fallow on nor		
		tree fallow on		
	shrub fallow			
		grass la	nd	

Forests on degraded soils

Land cover fractions per scenario

	(secondary) Forest		Tree fa	Shruh	Dogradod	
	Non-degraded	degraded soils	non-degraded	degraded	fallow	grass land
	soils	(afforestation)	soils	soils		grass land
1953	97%					
1973	80%		15%			
2010	44%		3%	30%	13%	5%
2017-2020	34%		6%	28%	19%	7%
2017-2020 + Upslope aff.	34%	13%	6%	21%	15%	6%
2017-2020 + Footslope aff.	34%	13%	6%	22%	14%	5%
2050 only degradation	34%		0%	6%	28%	26%
2050 also deforestation	24%		10%	6%	28%	26%

