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Nestedcross-validationGaussianprocess
to model dimethylsulfide mesoscale
variations in warm oligotrophic
Mediterranean seawater
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The study proposes an approach to elucidate spatiotemporal mesoscale variations of seawater
Dimethylsulfide (DMS) concentrations, the largest natural source of atmospheric sulfur aerosol, based
on the Gaussian Process Regression (GPR) machine learning model. Presently, the GPR was trained
and evaluated by nested cross-validation across the warm-oligotrophic Mediterranean Sea, a climate
hot spot region, leveraging the high-resolution satellite measurements and Mediterranean physical
reanalysis togetherwith in-situDMSobservations. Theendproduct is daily gridded fieldswith a spatial
resolution of 0.083° × 0.083° (~9 km) that spans 23 years (1998–2020). Extensive observations of
atmosphericmethanesulfonic acid (MSA), a typical biogenic secondary aerosol component fromDMS
oxidation, are consistent with the parameterized high-resolution estimates of sea-to-air DMS flux
(FDMS). This represents substantial progress over existing coarse-resolution DMS global maps which
do not accurately depict the seasonal patterns of MSA in the Mediterranean atmospheric
boundary layer.

Accurate estimation of sea-to-air dimethylsulfide flux (FDMS), the largest
natural source of sulfur aerosol particles in the atmosphere, requires a
reliable prediction of seawater dimethylsulfide (DMS) concentration. DMS
is a volatile biogenic gas produced by marine microorganisms that, when
released into the atmosphere, influences the formation of aerosols and
affects cloud properties1–3 and consequently planetary albedo and climate4.
Many attempts have been made to simulate the global DMS distributions,
the first of which was introduced in 1999 by interpolating existing surface
observations to generatemonthlymaps of 1° × 1° spatial resolution5. Twelve
years later, improved monthly DMS global maps were created using about
three times the number of data points as the initial version6. For a decade,
most atmospheric investigations used thesemaps6 as a reference product for
DMS emissions. Recently, the DMS climatology maps have been updated
oncemore7, referred to asDMS-Rev3, with a roughly 18-fold increase in the
raw database as compared to the second version6 which results in more
realistic monthly DMS estimates than the previous releases. Concurrently,
empirical algorithms were developed to model DMS distributions as a
function of controlling parameters like the ratios of chlorophyll-a con-
centration (CHL) to mixed layer depth (MLD)8, solar radiation dose9,

photosynthetically active radiation (PAR), and satellite-based Dimethyl-
sulfoniopropionate (DMSP) concentrations10,11, the major precursor of
marine DMS. Detailed information on the existing DMS retrieval algo-
rithms can be found in ref. 12.

Machine learning (ML) algorithms have been applied to create cli-
matological DMS fields that have the advantage of capturing nonlinear
interactions between environmental variables and DMS concentrations.
Wang et al.13 employed artificial neural networks (ANN) for constructing
global monthly climatology of DMS maps at 1° × 1° spatial resolution,
hereafter referred to asW20. Although global DMS products are believed to
be acceptable for qualitatively describing seasonal variations in DMS7,13,
their predictive ability tends todiminishat regional scales, failing toprecisely
resolve the oceanic mesoscale and sub-mesoscale spatial patterns or shorter
temporal scale variability12,14–17. As a result, there is significant uncertainty in
the regional distributions ofDMSconcentration andfluxes amongst various
global products18 owing to the limited space resolution.

Regionally, the monthly DMS climatology in the northeast Pacific
Oceanwas reconstructed at a higher spatial resolution of 0.25° × 0.25° using
random forest regression and ANN17. The study concluded that DMS
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patterns are linked to mesoscale oceanic variability; such patterns would
have remained obscure in the coarser resolution products12. In terms of
temporal coverage, climatology maps cannot properly analyze present and
future DMS emission trends under global climate change scenarios12,19.
Addressing this issue, Mansour et al.12 generated the first grided daily time
series of DMS concentrations and associated FDMS at a spatial resolution of
0.25° × 0.25°. The dataset was generated for the North Atlantic using the
GPR model. The DMS time series made it possible to elucidate high-
frequency spatial and temporal patterns in DMS variability, proving the
usefulness of a cutting-edge technique (GPR) for predicting sea surface
DMS concentration and flux. Finding trustworthy high-resolution DMS
concentration data is essential since changes in DMS dynamics usually take
place on the days-to-week timescales associated with meteorological
forcing16. Another advantage of the improved derived sea-to-air FDMS time
series is that it can be utilized to predict and comprehend the dynamics of
marine-derived biogenic sulfur aerosol concentrations and their radiative
effects20. Furthermore, carrying out relevant scientific studies aiming at
reducing aerosol-cloud interaction uncertainty in climate models requires
long-term, continuous, and high spatiotemporal resolution datasets.

TheMediterranean (MED) Sea, the object of this study, represents one
of themost complexmarine ecosystems on the planet21, with varied physical
and chemical processes occurring at different space-time scales such as
deep-water formation, thermohaline circulation, and subbasin gyres. MED
has been categorized as an oligotrophic basin22 due to the typically low
primary production, with notable bio-regionalization in phytoplankton
biomass and abundance at the subbasin to regional scales23,24. Although
biogenic sulfate aerosol contributes significantly to the sulfur burden in the
MEDatmosphere (estimated atmore than 26%)25–27 which is contributed by
extensive urbanpollution sources surrounding thebasin aswell as from ship
traffic, scarce information is available on the spatio-temporal distribution of
seawater DMS concentration and, particularly, sea-to-air flux. Previous
findings based on short-term observations revealed that the MED sea, like
most of the oligotrophic basins, presents the so-called summer DMS
paradox28,29 (elevated summer DMS concentrations coupled to low surface
CHL levels). DMS production in the MED sea is irradiance-dependent30,31

and is not proportional to total phytoplankton biomass32,33. Essentially, the
DMS concentrations peak 1-2 months after CHL33, following phyto-
plankton succession34,35 in stressed cells or grazing-derived production36,37,
as well as physiological adjustments31,38.

The study aims to assess the plausibility of applying the GPR model,
which has been successfully applied in theNorthAtlantic ocean12, to predict
long-term (1998-2020) high-resolution gridded fields of daily DMS and
FDMS time-series covering theMEDdomain at 0.083° × 0.083° (grid cell area
between 60 to 74 km2) spatial resolution.Moreover, it evaluates howwell the
nested cross-validation performs while evaluating ML models with few
observations. A comparison with currently available DMS climatology
products has been conducted to show the uncertainty level of their dis-
tributions over the regional seas. We explain the seasonal patterns of the
predictedDMSandFDMS andhow they follow the long-termmeasurements
of MSA, a biogenic aerosol component of DMS oxidation. After evaluating
themost popularML regressionmodels (Table 1 of ref. 20),GPRwas shown
to be the best-performingmodel for reconstructing DMS observations. The
model was built employing the available in-situ sea surface DMS
concentrations5,16 (Fig. S1), high-resolution satellite observations of CHL,
sea surface temperature (SST), and PAR as well as sea surface salinity (SSS)
and MLD from the novel MED physical reanalysis39. To gain a better
understanding of the links between these parameters and both DMS and
FDMS at different time scales, the spatio-temporal variations of these para-
meters were investigated over 23 years by performing the empirical
orthogonal function (EOF) analysis40 on the daily gridded datasets.

Results
GPR evaluation and data generation
Using the 5-fold nested cross-validation (nCV) approach (seeMethods), we
assess theGPRmodel on test subsets of the outer loop (Fig. 1a). The aim is to

minimize overfitting and ensure that the trained/cross-validatedmodel can
be adapted to another dataset impartially. Figure 1b presents the scatter plot
betweenobserved andpredicted seawaterDMSconcentrationsbyGPR.The
average evaluationmeasures, on the 5 test folds, exhibit that GPR achieves a
coefficient of determination (R2) of 0.71 and rootmean square error (RMSE)
of 0.12.Notably, themodelperformance is impartial across the various inner
cross-validation subsets, with anR2 ranging from 0.63 to 0.72 and an RMSE
between 0.12 and 0.14 (Fig. S2). The performance is consistent with the
results given by the GPR over the North Atlantic domain (R2 = 0.71 and
RMSE = 0.21; on the test fold)12, by implementing nearly four times asmany
data points in building the model. Contextually, previous studies reported
similar prediction performances by using ANN to estimate the monthly
climatology of global ocean DMS distributions (R2 = 0.66)13 and to char-
acterize spatio-temporal DMS variability in the Yellow and East China Sea
(R2 = 0.71)41. The random forest regression and ANN caught up to 62% of
the observed monthly climatology of seawater DMS fluctuation in the
northeast subarctic Pacific17.

We compared the GPR model as a tool to predict seawater DMS
concentrations with the previously published empirical methods8–10 and the
ANN13 ofW20.Weadapted anANNmodelwith the samehyperparameters
as W20 (i.e., one input layer, two hidden layers, one output layer, and a
regulation parameter value of 0.001) keeping the same potential predictors
used in GPR, for proper comparison. The results (Fig. 1c) show that GPR
has much higher prediction accuracy with a markedly higher R2 value and
lower mean absolute error (MAE). GPR achieves MAE of 0.52 µmol m–3,
which is 59% lower than the most skilled empirical method8,
MAE = 1.26 µmol m–3, and 7% lower than ANN, MAE= 0.56 µmol m–3.
This indicates a major improvement in the representation of the regional
seawater DMS variability in the MED sea by GPR. The trained GPRmodel
was used to calculate daily seawaterDMS concentrations (Fig. 2a), as well as
sea-to-air FDMS (Fig. 3a), at eachpixel of theMEDdomain.The griddeddata
has a high resolution of 0.083° × 0.083° covering from 1998 to 2020. As an
illustration of the data product, Fig. 3b presents a daily time series of DMS
and FDMS averaged over the entire MED domain.

The annual mean climatological distribution of DMS (Fig. 2a) across
the 23-year study period shows that GPR-DMS values vary from 1.68 to
4.39 µmol m–3 (minimum and maximum over all the grids), with median
value equal to 3.18 µmol m–3. In general, DMS concentrations are higher in
the eastern Mediterranean (EMED) than in the western Mediterranean
(WMED). The south-central Mediterranean (CMED), front of Libyan
coast, and the northeast Levantine basin have the highest DMS con-
centrations. The north Adriatic (at the mouth of the PO river) and north
Aegean (near the Sea of Marmara) have the lowest DMS concentrations,
which could be attributed to fresh- and low- saline water discharge into the
MED. Laboratory-controlled experiments showed that the DMS accumu-
lation rate is reduced as salinity decreases42–45. The Alboran subbasin, which
is near the Gibraltar Strait and is affected by the input of Atlantic water, is
another area displaying low DMS concentrations. In comparison to recent
estimates of annual climatology from global products (Rev3 andW20)7,13, it
is noticed that their output failed to resolve DMS spatial variations at
regional scales, as expected due to their coarser resolution. The gradual
increase in DMS fromWMED to EMED can be somewhat represented by
theW20, but Rev3 regarded theMED domain as a bulk region where DMS
presents reduced spatial variability or almost constant concentrations (Fig. 2
and Fig. S3). Concerning the average concentrations across the MED, the
GPR-DMS has an annual mean of 3.14 ± 0.32 µmol m–3, which is com-
parable with Rev3 (3.61 ± 0.15 µmol m–3) and twice as high as W20
(1.75 ± 0.19 µmol m–3). On an annual basis, GPR shows an approximate
13% decrease in DMS concentration compared to Rev3 (Fig. 2d) but is 81%
greater than W20 (Fig. 2e), throughout the whole domain.

The MED sea-to-air FDMS (Fig. 3a) is calculated to be 4.6 ± 1.1 µmol
m–2 d–1 on an annual basis; similarly to the DMS distribution, significant
regional differenceshave beenobserved, primarily the contrasting emissions
between the WMED (relatively low emissions) and EMED (high emission
rates). The integrated FDMS-derived sulfur emissions over thewhole domain
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have an average of 265.6 ± 7.6 Gg yr–1, displaying notable interannual
variability (Fig. 3b), with the largestflux recorded in 2016 (279.9Gg) and the
minimum flux occurred in 2004 (250.4Gg). Such an average integrated flux
is approximately 12% lower and 58% greater than Rev3 (301.6 Gg yr–1) and
W20 (168.4Gg yr–1) climatologies, respectively. It should bementioned that
the estimates of FDMS from the aforementioned global products were
computed using the same GPR-FDMS parameterization method46 because
different approaches produced different results (see Discussion). This was
done by using the monthly DMS concentrations (Rev3 and W20) and
climatic monthly of SST and WS. This is required to conduct a proper
comparison of GPR-FDMS and other estimates, throughout the
present study.

Monthly DMS and FDMS distributions
In this section, we investigate the monthly climatology of DMS and FDMS

fromGPR and compare themwith the Rev3 andW20 products. The maps
are presented in Fig. 4 and Fig. S4.With spring being a season of growth and
autumn being a season of decay, the monthly mean sea surface DMS con-
centrations averaged over the years 1998–2020 (Fig. 4a) exhibit an evident
seasonality minimum in winter (Dec to Feb) and maximum in summer
(Jun–Jul). The EMED is characterized throughout the year by rather higher
values than the WMED. It is observed that the spatial features of the DMS

concentration in the oligotrophicMED sea do notmatch the distribution of
CHL, a tracer of phytoplankton activity (Fig. S5) in agreement with pre-
viously reported observations32,47. We found that W20 underestimates the
DMS concentration, particularly in spring and summer, when compared to
GPR. Rev3 quantitatively displays very comparable DMS concentrations,
however there is high overestimation inMay and inconsistent low values in
July (Fig. S4).

GPR-FDMS monthly maps (Fig. 4b) show that the main seasonal cycle
of DMS flux depends strongly on the seawater concentrations; GPR-FDMS

begin to rise in May and peaks in July, followed by a steady decline in
September. December and January have the lowest GPR-FDMS at roughly
2.1 ± 0.6 µmol m–2 d–1, while July has the largest emission rate at
8.3 ± 2.0 µmolm–2 d–1. According to the Rev3-FDMSmonthlymaps (Fig. 4c),
FDMS peaks in May (9.3 ± 2.5 µmol m–2 d–1), two months before GPR, with
an incidental dip in July, followed by an increase inAugust; nonetheless, the
minimum levels occur in January (1.3 ± 0.4 µmol m–2 d–1). The W20-FDMS

(Fig. 4d), on the other hand, follows a regular seasonal cycle, with the lowest
emission rate in January (0.8 ± 0.3 µmol m–2 d–1) and the highest in August
(3.8 ± 1.6 µmolm–2 d–1). The differences (Rev3-GPR) in FDMSmaps (Fig. 4e)
show irregular positive and negative values, with positive differences
peaking in May (3.3 µmol m–2 d–1) and negative differences peaking in July
(–2.0 µmol m–2 d–1). On the contrary, (W20-GPR) FDMS climatology

Fig. 1 | The GPR training and validation process. a The nested-cross validation strategy used to evaluate GPR. b comparison of predicted and observed seawater DMS by
GPR, evaluated on the test folds of the outer loop. c comparison between estimated and observed DMS from the previous empirical algorithms and ANN.
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(Fig. 4d) shows lower values throughout the year, with the greatest dis-
crepancies observed fromMay to July (up to –6µmolm–2 d–1 in certain areas
of the MED domain) as displayed in Fig. 4f.

These findings highlight the discrepancies between global products
when estimatingDMSemissionflux on the regional scale.One shortcoming
of both products (Rev3 and W20) is the horizontal resolution (1° × 1°),
which pre-supposes that DMS remains constant across each grid area of the
domain (between 8.8 × 103 and 10.7 × 103km2, in the case of theMED sea).

This may be inconsistent with the MED sea’s subbasin scale, mesoscale
gyres, semi-enclosed nature, complex morphology and coastlines, and a
wide range of physical and chemical processes that govern its
productivity23,48. In terms of quantitative estimation of the DMS-derived
sulfur aerosol budget, while the Rev3 productmisses a large portion of grids
over the Adriatic Sea, the W20 output provides DMS values over the
majority of Italy’s land area (Fig. 2), indicating a major problem with data
quality at the regional scale.

EOF and drivers of DMS and FDMS variabilities
The preceding discussions show that DMS and FDMS, retrieved by GPR,
display a wide spatiotemporal variability in the MED sea. Herein, the EOF
analysis is applied to the gridded high-resolution dataset to investigate the
DMS and FDMS spatial variability patterns and how they change with time.
Then, to better understand the probable interactions between them and
their independent controllers at different space-time scales. The EOF ana-
lysis is one of the most extensively used methods for understanding spatio-
temporal variability in oceanic and atmospheric data40,49. It allows us to
identify the dominant modes of variability by decomposing the dataset into
spatial modes (EOF modes that show the patterns of variability) and their
associated time series or principal components (PCs), which quantifies the
importance of eachmode. The findings of the first three EOFmodes, where
the majority of the variance is explained, for DMS and FDMS, as well as the
governing parameters (CHL, MLD, SST, PAR, SSS, WS, and KDMS), were
evaluated in the present study. We applied the EOF analysis to the original
daily time series during 1998–2020, in order to account for the main cycles
of the studied parameters.

The spatial patterns of EOF modes and the normalized climatology
(during 1998–2020) of their amplitude time series (PCs) forDMS and FDMS

are displayed in Fig. 5a–d. The original PCs time series are presented in
Fig. S6. The first three EOF modes of the DMS (FDMS) account for about
93.7% (64.8%) of the overall variance of the data, with thefirstmode (EOF1)
alone explaining about 90% (50%). In parallel, theEOF1ofCHL,MLD, SST,
PAR, SSS, WS, and KDMS accounts for 56.4%, 77.8%, 95.8%, 83.7%, 22.4%,
33.2% and 29.2% of the variance, respectively (Figs. S7–S9).

Fig. 2 | Annual climatology of seawaterDMS concentrations. a spatial distribution
of DMS based on the GPR model at 0.083° × 0.083° over 1998–2020. Climatology
output at 1° × 1° based on Rev3 (b) andW20 (c) estimates. Note that the color scale is

different for each product. The relative difference of GPR from Rev3 (d) and from
W20 (e) as percentages.

Fig. 3 | The sea-to-air FDMS annual climatology and time series. a Annual dis-
tribution of FDMS at 0.083° × 0.083° over 1998–2020 derived from the predicted
DMS concentrations (GPR) and Blomquist et al.46 parametrization. b daily time
series of average DMS and FDMS in the entire Mediterranean obtained by GPR in
1998–2020, whereas shaded areas represent ± spatial standard deviations. The black
line represents the annual total cumulative emission fluxes (integrated over the area
of each pixel in the domain) in Giga grams per year.
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The spatial patterns of EOF1 for DMS (Fig. 5a) and FDMS (Fig. 5b) are
positive throughout the MED domain, indicating an in-phase oscillation of
the entire basin around the steady-state mean. This indicates the cycle crest
emerges when the PC time series is positive too, and vice versa. The Tyr-
rhenian Sea and the north-central part of the basin including the Adriatic
have the largest DMS annual amplitude, whereas the Alboran Sea, South
Levantine, and the northernmost part of the Aegean Sea have the lowest
variability. Besides, FDMS displays the highest variability in the northwest
part of the basin and the Aegean Sea, to the east of Crete Island. The PC1
time series (Fig. S6) and their normalized climatology during 1998-2020 of
DMS (Fig. 5c) and FDMS (Fig. 5d) show a clear annual cycle that is the
leading component of variabilities. The subbasins showing higher EOF1
values are therefore characterized by a seasonal DMS cycle of greater
amplitude. The maximum temporal amplitude is reached in June and July
and the minimum in winter (Dec-Feb). The annual cycle of DMS is driven
mainly by the available radiation for photosynthesis (r = 0.93; p < 0.05
between PC1-DMS and PC1-PAR) (Fig. 5e and Fig. S10). When low CHL

and a shallowmixed layer coexist with increased PAR, it suggests that high
DMS concentrations are linked to stressed phytoplankton cells stuck in a
shallow surface mixing layer due to oxidative stress brought on by irra-
diance. Contextually, FDMS seasonality is mainly governed by the seawater
DMS concentrations (r = 0.89; p < 0.05; Fig. S11).

The DMS EOF2 mode accounts for around 3.1% of the overall var-
iance. Its spatial pattern is a dipole, with opposite fluctuation between the
EMED andWMED (plus Adriatic) subbasins. According to the DMS PC2
climatology, there are two peaks: a point of maximum by the end of April
and a peak from end of August to start of September; there are also two
troughs: a sharpminimumby the endof June and a broaderminimum from
January to February. Consequently, high-frequency variations in DMS
peaked primarily in late spring and late summer in the EMED, simulta-
neously, the Adriatic and WMED seas show minimum amplitudes. The
peak in late spring may correspond to phytoplankton succession occurring
1–2 months after the late winter and early spring bloom34,35. A possible
interpretation of the second peak is that warm EMED water masses may

(a) GPR (b) GPR (c) Rev3 (d) W20 (e) Rev3 – GPR (f) W20 – GPR

Fig. 4 | Monthly spatial distributions of sea surface DMS concentrations and
related emission flux. aDMSmaps based on GPR during 1998–2020, (b–d) sea-to-
air FDMS based on the Blomquist et al.46 parametrization and the predicted DMS
from GPR, Rev3 and W20. e the difference between Rev3-based FDMS and GPR-

based FDMS. f the difference between the W20-based FDMS and GPR-based FDMS.
The pixel resolution of (a) and (b) is 0.083° × 0.083° while (c–f) have 1° × 1° spatial
resolution. The monthly (average ± spatial standard deviation) is shown in brackets
in each panel.

https://doi.org/10.1038/s41612-024-00830-y Article

npj Climate and Atmospheric Science |           (2024) 7:277 5

www.nature.com/npjclimatsci


induce DMS production driven by stratification-stressed effects at high
surface irradiance. This can be evidenced by the consistency betweenDMS-
EOF2 and SST-EOF2 (Fig. S8) spatial patterns as well as the considerable
association between their PCs time series (Fig. S10; r = –0.37; p < 0.05, being
the negative sign due to the opposite spatialmodes). In parallel, the EOF2 of
FDMS explains roughly 9.7% of the variance and divides the MED Sea into
two regions with opposing phases. On one side, the central part along the
Sicily channel, the Tyrrhenian subbasin, and the northwest section of the
MED show relatively high FDMS in May-June. The Levantine and Aegean
subbasins, on the other side, exhibit an increase in emissions duringAugust.

TheDMSEOF3mode accounts for aminor percentage of the variance
(0.8%) and will not be discussed. Conversely, the FDMS EOF3 accounts for
about 5.3% of the total variance and its spatial distribution shows an out-of-
phase oscillation with opposite peaks between the central part of the basin
and the westernmost and easternmost parts of the basin. The maximum
variability (with opposed phases) is observed in the Gulf of Lion and the
central part of the basin. The variations of PC2 and PC3 of the FDMS time
series (Fig. S6 and Fig. 5d) are characterized by high-frequency oscillations
(low periods; of the order of days). Such small-time scale variations of FDMS

can be driven by changes in wind speed and consequently, the DMS gas
transfer velocity (KDMS). This can be seen clearly from the positive corre-
lation between PC2-FDMS and both PC2-WS (r = 0.67; p < 0.05) and PC2-
KDMS (r = 0.70; p < 0.05) as well as a similar relationship between the PC3
time series of these components (Fig. S11). It is worthwhile to point out that
the Gulf of Lion is vulnerable to strong short-term wind events (e.g., the
Mistral wind50) which contribute to enhanced air-sea interactions51.

In summary, the EOF analysis shows that the annual fluctuation is the
leading component of DMS variability over the MED sea, captured by
EOF1; such a component is driven mainly by physical conditions like the
available solar radiation. Variations on a smaller time scale contribute to a
minor part of the variability and occur with opposite phases in the western
and eastern parts of the domain.

Also, the variability of FDMS is mostly driven by the yearly cycle, even
though the magnitude of the variation is lower than that of DMS con-
centration whilst EOF 2 and 3 are relatively more important for FDMS than
for DMS. Themain driver of the yearly fluctuations in FDMS is the seawater
DMSconcentration. Localwinds seem toplay an important role in the FDMS

short-term scale fluctuations over theMED sea, as highlighted in EOF2 and
EOF3. Supporting that, the FDMS monthly distributions (Fig. 4b) show a
hotspot of high emission rates over the Aegean Sea (an area of low DMS
concentrations) during summer (the season of lowwind). This could be due
to the impact of the intensified Etesian winds blowing over the Aegean Sea
during summer52. This can be observed in the monthly fields of wind cli-
matology (1998-2020) presented in Fig. S12.

FDMS and MSA relationship: potential perspectives
The study’s outcomes provide an inventory of marine biogenic DMS
emissions that can be used to improve the modeling of biogenic sulfur
aerosol concentrations20 in the MED atmosphere. To investigate this pos-
sibility, we compare high-resolution constructed GPR-FDMS with atmo-
spheric particulate methanesulfonic acid (MSA) concentrations in
backgroundmarine conditions.TheMSAmeasurementswere carriedout at

(a) DMS (b) FDMS (c) DMS

(d) FDMS

(e) (f) (g)

Fig. 5 | EOF analysis. The first three modes of EOF spatial patterns of (a) DMS and
(b) FDMS calculated fromdaily (0.083° × 0.083°) datasets generated byGPR and their
corresponding daily climatology of PCs time series for the 1998–2020 period (c, d).

e, f, and g, daily climatology of PCs time series of the environmental parameters
controlling DMS and FDMS. The PCs of each parameter have normalized from−1 to
1. Shaded areas represent ± standard deviations.
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Lampedusa (seeMethods), a central MED site (Fig. S1), from 2005 to 2019.
A subset of the availableMSA samples was chosen to represent atmospheric
marine boundary layer conditions in the MED, hence limiting continental
and/or anthropogenic contamination. This was accomplished, according to
the back-trajectory analysis (Section 4.4, Fig. S13 and Fig. S14), by selecting
samples synchronized only to air masses with a high degree of interaction
with seawater when passing through the MED domain.

Figure 6a shows the scatter plot between the observed MSA at Lam-
pedusa and the GPR-FDMS averaged inside the box area comprising grid
coordinates 32°–42° N and 05°–20° E (black box in Fig. S1). This black box
area has the potential to be the main source region of biogenic emissions

arriving at the sampling point during the entire measuring period (2005-
2019), revealed by air mass frequency analysis. There is a significant cor-
relation (r = 0.57; p < 0.05) between GPR-FDMS and MSA atmospheric
concentration. The link is mostly driven by seasonality, with low FDMS

synced to low MSA concentrations in the winter (Dec-Feb), and a sub-
stantial increase in both parameters during summer (Jun–Aug). During the
period 2005-2019, the summer average [median] MSA concentration was
about 38.3 ± 22.5 [34.3] ng m–3, about 10 orders of magnitude higher than
the concentration levels in winter (3.6 ± 2.9 [2.9] ngm–3). Simultaneously to
MSA concentration, FDMS increased from 2.1 ± 0.7 [2.0] µmol m–2 d–1 in
winter to 7.0 ± 2.0 [6.7] µmolm–2 d–1 in summer (nearly three times stronger
emissions). Apart from the seasonal minima and maxima, FDMS emissions
and MSA concentration are very consistent also during the transition sea-
sons of autumn and spring.

The seasonal changes were examined (Fig. 6b) and compared to those
calculated using previously published FDMS climatologies (Rev3 andW20).
The seasonal trend of MSA concentrations shows peaks in the summer
(Jun–Jul) and declines in the winter (Dec–Feb). This tendency aligns with
the seasonal fluctuations in GPR-FDMS, emphasizing the importance of
high-resolution datasets in representing the real atmosphere and improving
the simulation of DMS-derived aerosols and their associated radiative
impacts. Conversely, the Rev3-FDMS peak appears earlier (inMay) than the
MSA concentration peak, while the W20-FDMS peak appears later (in
September), and they are generally less consistent with the MSA seasonal
trend (Fig. 6b) compared to GPR.

Discussion
DMS, as the main oceanic source of sulfur aerosol particles in the atmo-
sphere, can affect regional and global climate via altering cloud condensa-
tion nuclei concentrations. However, it is not effectively represented in
climate models, particularly across regional seas, because precisely pre-
dicting the sea-to-air FDMS is challenging. The capacity to capture high-
frequency spatial and temporal patterns in DMS and FDMS variations is one
of the advantages of generating high-resolution data products. The limited
performance of previous methods at fine regional scales is becoming
increasingly apparent globally12,15,17. This undoubtedly encourages the sci-
entific community to focus on fine-scale regional parameterizations.

In the present work, the GPR model predicts seawater DMS with
superior performance thanpreviously publishedmethods, capturing 71%of
daily variations on completely different independent test subsets. However,
the appliedmodel and the previously publishedMLmethods still struggle to
capture high and low DMS concentrations13,14,17. Such extreme values are
scarcebut important considering their potential role in radiative forcing.ML
algorithmsnormally assumeuniformdistributions, although themajorityof
oceanic and atmospheric datasets have skewed distributions, with certain
values within specific ranges occurring less frequently. As a result, models
performbetter for frequently represented data points than for rare extremes.
In addition, during model training, a group of predictors may dominate
because of their strong match with the response, whilst other less-weighted
predictors may play a role in shaping extreme values. It will take more
research to overcome this challenge to use ML more effectively in oceanic
and atmospheric studies.

The major concern that can arise about the proposed dataset regards
the limited number of observations available to train the GPR model. A
detailed discussion on the suitability of the in-situ DMS concentration
dataset for the purpose of training the GPR model can be found in the
Supplementary material (Text S1, Figs. S15–S18). Here, we stress out that
GPR does not work by interpolating the observations in space or time;
instead, it derives a relation between the predicted variable and the con-
sidered predictors, using then said relation to re-construct the predicted
variable outside the training domain, as a function of the measured pre-
dictors. For this reason, GPR cannot be reasonably affected by anomalous
observations (i.e., observations not representative of the climatological
conditions) that might be non-negligible in a small dataset, as far as the
relation between predicted variable and predictors remain consistent. This

Fig. 6 | Relationship between FDMS andMSA. a Scatter plot betweenMSA observed
at Lampedusa measuring site (black filled square in Fig. S1) and the GPR FDMS

averaged inside the box delineated in Fig. S1. The FDMS is calculated from the
predicted DMS concentrations by GPR employing Blomquist et al.46 parametriza-
tion. The diamond symbols represent the seasonal median and the whiskers extend
to the 1st and 3rd quartiles. bMonthly box charts of MSA at Lampedusa, each box
chart displays the median (line inside of each box), the 1st and 3rd quartiles (bottom
and top edges of each box), the mean (connected line), and the climatology of FDMS

from different estimates inside the same box area.
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condition is evidently respected in the training dataset used here, as shown
by the good performance of the model to reconstruct the observations. If
anomalous observations had distorted or disrupted the DMS vs. predictors
relationship, the model would have failed in evidencing such relationship,
resulting in a low or null prediction performance.

Themost typical technique to validate aMLmodel is to keep a separate
subset of the data for testing in parallel to the using the normal CV on the
training subset12,20. However, this method demands enough amount of data
to apply the train/test split and exclude the test subset from the model
building up. Rather than testing the model only once, many models can be
tested iteratively on different portions of the data utilizing the nCV. The
nCV allows to train and test a model many times with non-overlapping
subsets. This strategy is specifically designed to work with a limited number
of data points and to determine whether the model can produce unbiased
performanceondifferent test subsets.Apotential benefit of thenCVis that it
uses all of the available data for model training and testing, which should
produce results that are more representative of the data population than
using only a portion of the data, as with a train/test split or new dataset.
Because the nCV adds significantly more information to themodel to learn
from it, the method can be used even when there is ample data.

Based on the ML-evidenced relation between DMS concentration
and the driving predictors employed, the model has been extended to run
over non-sampled areas for constructing the presenting datasets. We
underline that for running GPR on a new dataset it is not important to
achieve an extensive time or space data coverage in the training dataset,
but instead to cover a significant fraction of the DMS and predictors
variabilities, which was achieved in this study as shown in Fig. S17. The
time frame used in the GPR development is 1999–2012, and the model is
used topredict from1998–2020.The capacity to evaluate the robustness of
themodel’s performance over time is limitedby the availability of seawater
DMS data, emphasizing the importance of doing more observations in
regional waters and overlooked seas. Nevertheless, the correlation
betweenMSA measurements and the predicted FDMS provide confidence
that the GPR is picking up the prominent patterns. Interestingly, the
FDMS-MSArelationship remainedunchanged between the trainingperiod
of 2005–2012 and the extension period of 2013–2019, when no DMS
measurements were accessible (Fig. S18), confirming that the DMS con-
centration and related fluxes were not biased by the GPR algorithm when
operating outside the training period.

It is vital to highlight that the sea-to-air FDMS is predominantly
determined by seawaterDMSconcentration,withDMSgas transfer velocity
acting as another regulator (EOF analysis). The choice of the parametriza-
tion method of gas transfer velocity impacts the FDMS quantification. We
used the Blomquist et al.46 method, which yields the best match with the
MSA (Fig. S19) and is suggested by Bhatti et al.53 study. However, we report
that the use of Goddijn-Murphy et al.54 and Nightingale et al.55 para-
metrizations provided higher FDMS by around 18% and 28%, respectively,
compared to Blomquist et al.46, evaluated over the MED domain on an
annual basis (Fig. S20).

The improved dataset outperforms previous offerings in terms of
describing mesoscale spatiotemporal variability of DMS concentration and
sea-to-air flux; this essential dataset is imperative for long-term studies on
marine aerosol and the assessment of its radiative impacts in climatemodels.
Importantly, the GPR model can capture the summer DMS paradox (EOF
analysis), which is a characteristic phenomenon of most of the oligotrophic
basins. The CHL in the MED sea, as a proxy of phytoplankton activity, do
not follow theDMSandMSAconcentrations seasonal trend, evidence of the
complexity of theMEDbiogeochemical cycle31. This ismost likely due to the
various mechanisms that contribute to the breakdown of phytoplankton
cells and the release of DMS, as well as DMS emission into the atmosphere
and oxidation to MSA. When biological activity is at its peak in late winter
and early spring due toMED general circulation and deep-water formation
and the solar radiation has not yet reached its peak in the summer, DMS
release is still modest. When solar radiation reaches its maximum in sum-
mer, DMS and FDMS tend to be maximized accordingly. In essence, in

warm-oligotrophic environments like the MED sea, the annual cycle
appears to be considerably more linked to physical parameters (e.g., solar
radiation and surface temperature), whereas biotic variables contribute to
quick (high frequency) DMS adjustments. The fact that GPR is able to
reconstruct such complex interactions between DMS concentration and its
predictors contributes to building confidence on the reliability of the
modeled dataset.

Notwithstanding the above pieces of evidence supporting the general
reliability of the modeled DMS concentration fields, we cannot rule out
some degree of uncertainty due to the limited space-time coverage of DMS
observations in the MED basin. For instance, we evidence that no mea-
surements were available for the Adriatic Sea and therefore we invite future
users to be careful when extrapolating DMS data for such area, considering
its enclosed nature and oceanographic peculiarity.

As an effective tool for predicting DMS, as demonstrated in this study
and the previous one in the North Atlantic12, GPR can be run in different
biogeochemical provinces of the global ocean56, to produce much more
reliable products with high spatial resolutions. This necessitates global
advances in physical ocean reanalysis as well. Enhanced global oceanic
products have the potential to significantly improve the simulation of
aerosols originating from DMS even in marine regions with complex
morphology and dynamics as well as the resulting regional-scale aerosol-
cloud interaction effects.

According tobothpresent and future projections, theMED is ahotspot
for global warming because its changes have beenmore rapid than those of
the ocean as a whole57, having a significant effect and increasing risks on all
sectors of the marine environment during the coming decades58–60. Reliable
representations of marine biogenic emissions, as well as their long-term
variations and future scenarios in the context of climate change, are among
the key products to reduce aerosol-cloud interaction uncertainty in MED
regional climate models.

Methods
Study domain and data sources
Our research domain is theMEDSea, extending from30° to 46°Nand from
06° W to 36.5° E (Fig. S1). Geographically, it is divided into three major
subbasins: theWestern Basin (WMED), which is connected to the Atlantic
Ocean by the Strait of Gibraltar, the Central Basin (CMED), which
encompasses the Sicily Channel, the Ionian Sea, and the Adriatic Sea, and
the Western basin (WMED), which is connected to the Black Sea by the
Dardanelles Strait and the Sea of Marmara. The datasets used for this study
are retrieved fromsatellite products, in-situ data, andmodel reanalysis in the
period 1998–2020. The datasets for this research were obtained from high-
resolution satellite products and the Mediterranean Sea Physics Reanalysis.
They are briefly described below:
• Daily Level4 (L4) chlorophyll-a concentration (CHL) taken from

Copernicus-GlobColour Satellite Observations at 0.042° × 0.042°
resolutions.

• Daily photosynthetically available radiation (PAR) data were collected
from NASA Ocean Color products such as SeaWiFS (1998–2002),
MODIS-Terra (2001–2021), andMODIS-Aqua (2003-2021). SeaWiFS
has a spatial resolution of 9 km (0.083° × 0.083°), while MODIS has a
resolutionof 4 km(0.042° × 0.042°); bothareL3outputs.Thedatawere
merged and linearly interpolated before being processed as L4 data.

• The L4 daily SST fields61,62 were generated by the EU Copernicus
Marine Environment Monitoring Service (CMEMS) using satellite
estimates, with 0.05° × 0.05° spatial resolution.

• The daily sea surface salinity (SSS) andmixed layer depth (MLD) were
taken from the MED Sea physical reanalysis at 1/24° × 1/24°
resolution39. This data is a multiyear output generated by a numerical
system comprised of a hydrodynamic model and a variational data
assimilation method developed in the CMEMS framework.

In addition, in-situ observations of surface seawater DMS concentra-
tions were obtained from the Global Surface Seawater DMS Database
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(Pacific Marine Environmental Laboratory, PMEL5) in the MED sea
domain and from Royer et al.16 campaigns. The sampling points are shown
in Fig. S1. All the data includingDMS, the aforementioned satellite data and
physical reanalysis data were binned into 0.083° × 0.083° (~9 km) daily
resolution. The binned dataset was used in the training and nCV validation
of the GPR model.

GPR training and the nested cross-validation
We built up the GPR model using the daily binned (0.083° × 0.083°)
independent variables (features) as predictors of seawater DMS con-
centrations. The predictors are CHL, SST, PAR, MLD, SSS, and the day of
year (DOY). The use of DOY as a temporal predictor seeks to compensate
for the lack of data continuity in observations. GPR12,20 is an efficient ML
algorithm that solves regression problems using a non-parametric kernel-
based Bayesian probabilistic strategy63. It is powerful on small datasets since
contemporary kernel (covariance) functions are readily available64. The
kernel function used in this study is the exponential that has been defined as
the best optimal one in predictingDMS12 in a previous attempt. In theMED
domain, a total of 402 remapped data points, jointly obtained from cruises
and fixed stations (Fig. S1). After transforming to the log- scale, of the 402
data points, we eliminated two points that lie below the threshold (mean –
three times the standard deviation) and three points that lie above the
threshold (mean + three times the standard deviation), which can be
considered outliers. Ultimately, 1.2% of the total points have been elimi-
nated and the rest of data points which equal to 397were used for themodel
generation.

Weevaluated theGPRusing thenCV loop topreventmodel overfitting
and guarantee the unbiased generalization of the trainedmodel (Fig. 1a). In
this manner, the dataset is divided into k outer folds approximately of equal
size; each outer fold is kept aside for testing, and the remaining k-1 folds are
combined and further divided into inner folds for training and cross-
validation. We used 5-fold cross-validation in both the inner and outer
loops, keeping in mind that the dataset was divided randomly without
repetition between the subsets. Thismeans that all the data has been divided
into 5 folds (eachwith about 80 points). Each time in the outer loopwe select
a fold as a test set, while the remaining four folds are used for training. The
four folds are divided once more into five groups to apply the standard
cross-validation12,20 in the inner loop. This procedure will be repeated five
times; hence each part of the data will serve as the testing set for once;
afterwards, the simulated results when serving as the testing set are aggre-
gated and plotted versus the observed DMS to show the generalization
ability of the GPRmodel. The nCV enables themodel to be tested across all
independent test subgroups and yield an average performance. The
approach is particularly useful in situations when there is a limited amount
of data, as in our case, as it enables multiple training and testing of a model
utilizing the non-overlapping parts (i.e., folds) of the dataset.

The GPR model was used to generate the long-term (1998–2020)
gridded fields of high-resolution (0.083° × 0.083°) daily DMS distributions
across the MED sea. Consequently, daily sea-to-air FDMS were calculated
using seawater DMS concentrations by GPR and the gas transfer velocity
(KDMS), which in turn depends on the surface wind speed (WS) and the
DMS diffusivity through seawater (Schmidt number; ScDMS). TheKDMS has
been parametrized using the following equation of Blomquist et al.46:

KDMS ¼ 0:7432× ðWSÞ1:352 × ð660=ScDMSÞ1=2

TheWS is the neutral wind speed at 10mabove the sea surface and has
been downloaded from the ECMWF-ERA5 reanalysis dataset65. The ScDMS
has been calculated using Saltzman et al.66 from SST.

MSA sampling and analytical determination
The atmospheric particulate MSA concentration sampling was carried out
at the Station for ClimateObservations,maintained by ENEA (theNational
Agency for New Technologies, Energy, and Sustainable Economic Devel-
opment of Italy) at Lampedusa (35.5 °N, 12.6 °E) in the central

Mediterranean (Fig. S1). Particulate matter with aerodynamic diameter
lower than 10 µm (PM10) was sampled during 2005-2019 at 24 h time
resolution, except the year 2019 which has 48 h time resolution. Detailed
description of the applied sampling protocols and analysis methodologies
can be found in Becagli et al.31.

Air mass back-trajectories analysis
We analysed the air mass back-trajectories (BTs) to identify the main areas
of the MED domain that can act as a source region of biogenic emissions
arrived at the Lampedusa measuring site. The BTs were calculated by
running the Hybrid Single-Particle Lagrangian Integrated Trajectory
(HYSPLIT4) model. The starting height is set to be 100m AGL, and the
backward time is 3 days with an interval of 1 h along each entire trajectory
track. The arrival frequency is 3 h (eight tracks per day at 00, 03, 06, 09, 12,
15, 18, 21 UTC) covering the period of MSA measurements (2005–2019).
The total number of BTs tracks is 43,824 (5478 days × 8 tracks a day). The
frequency of BTs endpoints of all tracks is presented in Fig. S13. This was
doneby counting thenumber of endpoints in each0.25° × 0.25° grid cell and
normalized them to themaximumvalue to find the percentage of endpoints
for all grid cells.

To identify the air mass tracks characterized by a high degree of
contact with the MED surface water before arriving at Lampedusa, we
calculated two indices: the retention ratio of the air mass over the MED
seawater (R0) and the retention ratio of an ocean air mass within the
marine boundary layer (RB). The R0 values quantify the lifetime of air
masses spending over the seawater to the total lifetime whereas, RB

evaluates how such an air mass is confined within the boundary layer
height. The boundary layer height datasets at each endpoint were
extracted from the hourly ECMWF-ERA5 dataset. The approach and
equations are described in detail in Mansour et al.20. Ultimately, the
marine air masses included in this study are identified if they have
R0 ≥ 0.8 and (R0+ RB) ≥ 1.3. In this way, we kept the air mass that had a
high degree of contact with theMED surface water within the last 3 days
before arrival at the Lampedusa site. Fig. S14 displays the frequency of
endpoints of the identified marine tracks of the air masses passing
across the MED domain. The sea area presenting high marine BTs
frequency (more than the 3rd quartile) was identified as the most likely
source region of biogenic emissions impacting Lampedusa measured
samples during the investigated period (2005–2019). The MSA con-
centration samples corresponding to marine BTs tracks were selected
and compared to DMS flux averaged within this area, delineated by the
green box in Fig. S14.

Data availability
The satellite CHL concentrations are available from Copernicus-
GlobColour Satellite Observations, accessible at https://doi.org/10.48670/
moi-00281. The SST fields were obtained from the Mediterranean Sea -
High Resolution L4 Sea Surface Temperature, accessible at https://doi.org/
10.48670/moi-00173. The PAR (SeaWiFS, MODIS-Terra, and MODIS-
Aqua) were obtained from NASA Ocean Color at https://oceancolor.gsfc.
nasa.gov. The SSS andMLDwere obtained fromMediterranean Sea Physics
Reanalysis, accessible at https://doi.org/10.25423/CMCC/MEDSEA_
MULTIYEAR_PHY_006_004_E3R1. The ECMWF ERA5 neutral wind
speed data were obtained from https://doi.org/10.24381/cds.adbb2d47. The
DMS observations data are available from http://saga.pmel.noaa.gov/dms/
and the Royer et al.16 cruises are obtained from Martí Galí. The MSA
measurements at Lampedusa are available based upon request from the
corresponding author.

Code availability
The codes used in this study are available upon request from the corre-
sponding author.
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