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• 	  Estimates of mean sea level change in the 20th and 
21st centuries are important for monitoring the effects of 
climate change

• 	  In particular, there is increasing interest in attributing the 
relative contributions to observed sea level from surface 
mass change both globally and in specific regions

• 	  Here we present a new method for obtaining such 
quantitative inferences from combinations of satellite 
gravity, satellite altimetry, and tide gauge data.

• 	  Our Bayesian approach uses an (effectively) infinite 
dimensional model space, which allows for realistic priors 
and comprehensive treatment of uncertainties 

• 	  As part of this work, open source python libraries are 
being developed for sea level modelling and the solution 
of Bayesian problems within a function space setting

Aim

Operator Formulation
A is an operator which determines how the Earth responds 
to a surface mass change:

The operator P takes these response variables and maps 
them to some observable:

Composed together, 

C is an operator which averages or sums the surface 
mass change over particular areas of interest. For a set of 
averaging functions, we have:

Bayesian Solution
Employing the above operators, we can form a pair of 
jointly distributed random variables:

Using the properties of Gaussian measures, it follows that

Our inference problem is posed such that we want to 
estimate w from a measurement of v. It can be shown that

with
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The example shown to 
the left demonstrates our 
method using satellite 
gravity data. We can 
easily adjust to other 
data sources, however, by  
changing the operator P. 
Here we show an inversion 
using tide gauge data from 
290 different locations.

Model space spherical harmonic truncation degree: L = 128

Aζ = (SL, u, ϕ,ω). (1)

P (SL, u, ϕ,ω) = v (1)

Bζ = PAζ = v (1)

Cζ = w (1)

v = Bu+ z, w = Cu. (1)
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,
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))
, (1)

w|v ∼ NG(w, S) , (1)

w = CQB∗(BQB∗ +R)−1(v −Bu), (1)

S = C[Q−QB(BQB∗ +R)−1B∗Q]C∗. (2)

To extend this, we can also combine multiple data sources 
into one inversion, by giving P a block matrix form.
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A very high dimensional model space facilitates the use 
of realistic priors. Here we show inversion results for 
three different priors - two rotationally invariant and one 
geographically informed. The sensitivity of the result to 
the choice of prior depends on the number of data points 
being observed; a higher dimension data space results in 
lower prior sensitivity. 
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Inversion/inference using 
synthetic satellite gravity 
data. 

Truncation degrees:
Model space L = 128
Data space L = 20
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