Thermospectric constraint on Earth's tropopause temperature Brett McKim^{1,2}, Nadir Jeevanjee³, Geoff Vallis², Neil Lew<u>i</u>s²

1 Laboratoire de Météorologie Dynamique, 2 University of Exeter, 3 Geophysical Fluid Dynamics Laboratory

EGU 30 April 2025

The tropopause is the boundary between the troposphere and the stratosphere

- The tropopause separates two regions with qualitatively different heat budgets
 - Troposphere exhibits a balance between net radiative cooling and heating from convection and eddies
 - Stratosphere is close to radiative equilibrium (zero net radiative cooling)

• The tropopause is important because it is a boundary condition for CO₂ forcing, hurricane intensity, CAPE, the water vapor feedback, stratospheric water vapor...

Convective outflow linked with sharp decline in radiative cooling profiles

Convective top linked with zero point of radiative cooling

Diabatic Mass flux (shading) linked with radiative cooling (contours) across the globe

observations 18 31.5 Height (km) 15 24.5⊤ Appedu 17.5 cdu 2 10.5 9 3.5 6 90S 60S 30S 90N 30N 60N C Latitude

Diabatic Mass flux (shading) **linked with temperature** (contours) **and water vapor** (blue) **across the globe**

Thompson and Bony, 2017

Thompson and Bony, 2017

Fixed Anvil Temperature (FAT)

Fixed Tropopause Temperature (FiTT)?

Hartmann and Larson, 2002

Hartmann and Larson, 2002

Water vapor is thermodynamically constrained — perhaps the tropopause too?

Hartmann and Larson, 2002

Hartmann and Larson, 2002

$$\tau_{\rm H_2O}(\nu, z) = \int_z^\infty \kappa_{\rm H_2O}(\nu) \frac{p}{p_{\rm ref}} \rho_{\rm H_2O} dz'$$

 $\tau_{\rm H_2O}(\nu, z) = \int_{z}^{\infty} \kappa_{\rm H_2O}(\nu) \frac{p}{p_{\rm ret}} \rho_{\rm H_2O}(z')$

 $\tau_{\rm H_2O}(\nu, z) = \int_z^\infty (\kappa_{\rm H_2O}(\nu)) \frac{p}{p_{\rm ret}} \rho_{\rm H_2O} dz'$

 $\tau_{\rm H_2O}(\nu, z) = \int_z^\infty (\kappa_{\rm H_2O}(\nu)) \frac{p}{p_{\rm rel}} \rho_{\rm H_2O}(z)$

 $\tau_{\rm H_2O}(\nu, T_{\rm em}) = 1$

e) Broadband radiative cooling to space

1500

0.000

 $\tau_{\rm H_2O}(\nu,z) =$

 $\tau_{\rm H_2O}(\nu, T_{\rm em}) = 1$

d) Spectrally resolved radiative cooling to space

 $\tau_{\rm H_2O}(\nu, z) = \int_z^\infty (\kappa_{\rm H_2O}(\nu)) \frac{p}{p_{\rm ree}} \rho_{\rm H_2O}(z)$

 $\tau_{\rm H_2O}(\nu, z) = \int_z^\infty (\kappa_{\rm H_2O}(\nu)) \frac{p}{p_{\rm ret}} \rho_{\rm H_2O} dz'$

When does water vapor stop cooling to space? How little water vapor is too little to emit?

$$\tau_{\mathrm{H}_{2}\mathrm{O}}(\nu, z) = \int_{z}^{\infty} \kappa_{\mathrm{H}_{2}\mathrm{O}}(\nu) \frac{p}{p_{\mathrm{ref}}} \rho_{\mathrm{H}_{2}\mathrm{O}} dz' \qquad \longrightarrow \qquad T_{\mathrm{em}}(\kappa_{\mathrm{H}_{2}\mathrm{O}}) = \frac{T^{*}}{W\left(\frac{T^{*}}{T_{\mathrm{ref}}}(D \cdot \mathrm{RH} \cdot M_{\mathrm{V}} \cdot \kappa_{\mathrm{H}_{2}\mathrm{O}})^{R_{\mathrm{d}}\Gamma/g}\right)}$$

When does water vapor stop cooling to space? How little water vapor is too little to emit?

$$\tau_{\mathrm{H}_{2}\mathrm{O}}(\nu, z) = \int_{z}^{\infty} \kappa_{\mathrm{H}_{2}\mathrm{O}}(\nu) \frac{p}{p_{\mathrm{ref}}} \rho_{\mathrm{H}_{2}\mathrm{O}} dz' \qquad \longrightarrow \qquad T_{\mathrm{em}}(\kappa_{\mathrm{H}_{2}\mathrm{O}}) = \frac{T^{*}}{W\left(\frac{T^{*}}{T_{\mathrm{ref}}}(D \cdot \mathrm{RH} \cdot M_{\mathrm{V}} \cdot \kappa_{\mathrm{H}_{2}\mathrm{O}})^{R_{\mathrm{d}}\Gamma/g}\right)}$$

thermo spectric

When does water vapor stop cooling to space? How little water vapor is too little to emit?

$$\tau_{H_2O}(\nu, z) = \int_{z}^{\infty} \kappa_{H_2O}(\nu) \frac{p}{p_{ref}} \rho_{H_2O} dz' \qquad \longrightarrow \qquad T_{em}(\kappa_{H_2O}) = \frac{T^*}{W\left(\frac{T^*}{T_{ref}}(D \cdot RH \cdot M_V \cdot \kappa_{H_2O})^{R_d \Gamma/g}\right)}$$

$$thermo spectric$$

$$T_{tp} = T_{\rm em}(\kappa_{\rm max}) \approx 188 \ {\rm K}$$

When does water vapor stop cooling to space? How little water vapor is too little to emit?

$$\tau_{H_2O}(\nu, z) = \int_{z}^{\infty} \kappa_{H_2O}(\nu) \frac{p}{p_{ref}} \rho_{H_2O} dz' \qquad \longrightarrow \qquad T_{em}(\kappa_{H_2O}) = \frac{T^*}{W\left(\frac{T^*}{T_{ref}}(D \cdot RH \cdot M_V \cdot \kappa_{H_2O})^{R_d \Gamma/g}\right)}$$

$$thermo spectric$$

$$\begin{aligned} T_{tp} &= T_{\rm em}(\kappa_{\rm max}) \approx 188 \text{ K} \\ \frac{dT_{\rm tp}}{dT_s} &= \frac{T_{\rm tp}}{T_s} \frac{1}{\frac{LR_d\Gamma}{gR_v T_{\rm tp}} - 1} \approx 1/7 \end{aligned} \qquad \text{(from pressure b)} \end{aligned}$$

proadening)

When does water vapor stop cooling to space? How little water vapor is too little to emit?

$$\tau_{H_2O}(\nu, z) = \int_{z}^{\infty} \kappa_{H_2O}(\nu) \frac{p}{p_{ref}} \rho_{H_2O} dz' \qquad \longrightarrow \qquad T_{em}(\kappa_{H_2O}) = \frac{T^*}{W\left(\frac{T^*}{T_{ref}}(D \cdot RH \cdot M_V \cdot \kappa_{H_2O})^{R_d \Gamma/g}\right)}$$

$$thermo spectric$$

$$T_{tp} = T_{\rm em}(\kappa_{\rm max}) \approx 188 \ {\rm K}$$

$$\frac{dT_{\rm tp}}{dT_s} = \frac{T_{\rm tp}}{T_s} \frac{1}{\frac{LR_d\Gamma}{gR_vT_{\rm tp}} - 1} \approx 1/7$$

(from pressure broadening)

$$\frac{d\ln\rho_{\rm H_2O}}{dT}\bigg|_{T_{tp}} = \frac{L}{R_v T_{tp}^2} = 16\% \,\,{\rm K}^{-1} \, \Longrightarrow \,\,\mathbf{4\,K\,to\,\,double\,}\varrho_{\rm H2O}$$

Testing the thermospectric constraint

Use the Isca Single Column Model (SCM)

Vallis et al, 2018 https://execlim.github.io/IscaWebsite/index.html

The model is configured with a correlated-k radiation scheme (RRTM), a boundary layer turbulence profile, and a simplified representation of moist convection (the simple Betts-Miller scheme).

Prescribed SSTs and RH. 280 ppmv CO₂. No O3.

Testing the thermospectric constraint

Use the Isca Single Column Model (SCM)

Vallis et al, 2018 https://execlim.github.io/IscaWebsite/index.html

The model is configured with a correlated-k radiation scheme (RRTM), a boundary layer turbulence profile, and a simplified representation of moist convection (the simple Betts-Miller scheme).

Prescribed SSTs and RH. 280 ppmv CO₂. No O3.

Testing theory against simulations

*For the global warming driven by insolation or prescribed SSTs

Use the Isca General Circulation Model (GCM)

$$T_{s}(\phi) = \begin{cases} 300(1 - \sin^{2}(3\phi/2)) \text{ K}, & \text{for } -\pi/3 < \phi < \pi/3 \\ 273 \text{ K}, & \text{otherwise,} \end{cases}$$

Radiative Tropopause

Using -0.2 K day⁻¹ criterion

Use the Isca General Circulation Model (GCM)

 $T_{s}(\phi) = \begin{cases} 300(1 - \sin^{2}(3\phi/2)) \text{ K}, & \text{for } -\pi/3 < \phi < \pi/3 \\ 273 \text{ K}, & \text{otherwise,} \end{cases}$

Radiative Tropopause

Using -0.2 K day⁻¹ criterion

b) Radiative tropopause height SSTs are varied 24Partially explains the 20rising tropopause $z_{tp}\;/\;{\rm km}$ 1612 $z_{tp} = (T_s - T_{tp})/\Gamma$ 8 -90904545Latitude / deg

Questions

• Can we make make FiTT quantitative? Can we predict tropopause temperature and its change with warming? Can we see FiTT in a hierarchy of models?

Questions

• Can we make make FiTT quantitative? Can we predict tropopause temperature and its change with warming? Can we see FiTT in a hierarchy of models?

Yes, the thermospectric constraint, constrains the tropopause temperature in a single column and general circulation model.

Questions

• Can we make make FiTT quantitative? Can we predict tropopause temperature and its change with warming? Can we see FiTT in a hierarchy of models?

Yes, the thermospectric constraint, constrains the tropopause temperature in a single column and general circulation model.

Takeaways

• A hierarchy of climate models exhibit a FiTT

Questions

• Can we make make FiTT quantitative? Can we predict tropopause temperature and its change with warming? Can we see FiTT in a hierarchy of models?

Yes, the thermospectric constraint, constrains the tropopause temperature in a single column and general circulation model.

Takeaways

- A hierarchy of climate models exhibit a FiTT
- It is the combination of water vapor thermodynamics and spectroscopy that allows a quantitative understanding of the tropopause.

Questions

• Can we make make FiTT quantitative? Can we predict tropopause temperature and its change with warming? Can we see FiTT in a hierarchy of models?

Yes, the thermospectric constraint, constrains the tropopause temperature in a single column and general circulation model.

Takeaways

- A hierarchy of climate models exhibit a FiTT
- It is the combination of water vapor thermodynamics and spectroscopy that allows a quantitative understanding of the tropopause.
- This constraint limits the vertical extent of Earth's general circulation, showing that small scale physics has large scale impacts.

To learn more

AGU Advances

RESEARCH ARTICLE

10.1029/2024AV001206

Peer Review The peer review history for this article is available as a PDF in the Supporting Information.

Water Vapor Spectroscopy and Thermodynamics Constrain Earth's Tropopause Temperature

Brett A. McKim^{1,2}, Nadir Jeevanjee³, Geoffrey K. Vallis², and Neil T. Lewis²

¹Now at LMD/IPSL, Sorbonne Université, CNRS, Paris, France, ²Department of Mathematics and Statistics, University of Exeter, Exeter, UK, ³Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA

The Paper

 Explores the thermospectric constraint in more detail and compares to other longstanding constraints based on TOA energy balance and gray radiation

About me

• Looking for assistant professor / lecturer positions

The connection between H₂O spectroscopy, radiative cooling, and the tropopause

Takeaways

e) Broadband radiative cooling to space

radiative

3

tropopause

Testing the OLR constraint T_{tp} diagnosed from radiative cooling profile OLR constraint a) Gray w/out moisture b) Gray w/ moisture c) Spectral w/ moisture 260Adding spectral radiation deviates T_{tp} (\bigcirc) from the OLR constraint (\Box), while still retaining a FiTT 240Radiative tropopause / K 220 $_{L}^{d}$ 200 Adding moisture leads to a FiTT, while still following 180 T_{to} follows OLR Radiative tropopause **OLR** constraint constraint, but not FiTT 160 280300 320 280300 260260 280300 320260320 T_s / K T_s / K T_s / K

Comparing behavior of emission levels

Normalized Radiative Heating / -

Validation of Theory's Assumptions about Stratospheric Water

$T_{\rm tp} = (OLR/2\sigma)^{1/4}$ (OLR constraint),