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Evaluation of multi-year droughts in global SMILEs
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2 Data & Methodology
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potential to aggravate such impacts due to water period: 1991-2020
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3 Representation of drought frequency in global SMILEs
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intensification processes, the risk for full years of Data set: ERASLand (Mufioz Sabater 2019). :  forconests e
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4 How often are drought years followed by another drought year? 5 Preliminary findings & Outlook
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represent the ERA5Land value per region. Violinplots represent member spreads.
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