GROW: A GLOBAL TIME SERIES DATASET FOR GROUNDWATER STUDIES

WITHIN THE EARTH SYSTEM

Annemarie Bäthge^{1*}, Claudia Ruz Vargas², Gunnar Lischeid^{3,4}, Raoul Collenteur⁵, Mark Cuthbert⁶, Jan Fleckenstein⁷, Martina Flörke⁸, Inge de Graaf⁹, Sebastian Gnann¹⁰, Andreas Hartmann¹¹, Xander Huggins¹², Nils Moosdorf^{13,14}, Yoshihide Wada¹⁵, Thorsten Wagener⁴, Robert Reinecke¹

¹Institute of Geography, Johannes Gutenberg-University, Mainz, Mainz, Germany International Groundwater Resources Assessment Centre (IGRAC), Delft, The Netherlands? Research Area 4: "Simulation & Data Science", Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany

⁴Institute of Environmental Science and Geography, University of Potsdam, Germany ⁵Department Water Resources and Drinking Water, Eawag, Dübendorf, Zürich, Switzerland

⁶School of Earth and Environmental Sciences, Cardiff University, UK ⁷Department of Hydrogeology, Helmholtz Center for Environmental Research, Leipzig, Germany

- ⁸Institute of Engineering Hydrology and Water Resources Management, Ruhr University Bochum, 44801, Bochum, Germany
- ⁹Earth Systems and Global Change group, Wageningen University and Research, Wageningen, the Netherlands ¹⁰Chair of Hydrology, University of Freiburg, Freiburg, Germany
- ¹Institute of Groundwater Management, Dresden University of Technology ²Institute for Resources, Environment, and Sustainability, University of British Columbia, Vancouver, BC, Canada ³Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany

¹⁴Kiel University, Kiel, Germany ¹⁵Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia * Correspondence: a.baethge@uni-mainz.de

GROUNDWATER TIME SERIES

Figure 1- World map with locations of every time series and classified by temporal resolution: The global groundwater data was derived from igrac's Global Well and Monitoring Data and Other Data^{18,19}. The color indicates whether a time series has a daily (orange), monthly (green) or yearly (purple) resolution. Additionally, the median groundwater depth per well is given for each temporal resolution. Below, a) the number of time series available per year, b) the number of time series per length class in years and c) the number of time series with no trend, increasing or decreasing trend (Mann Kendall trend direction) are displayed. The trend direction was switched for groundwater table depth time series so that a rising groundwater table (decreasing depth) is flagged as "increasing".

GROW (global integrated GROundWater package) is a global, analysis-ready dataset that combines observed groundwater time series data with potential associated Earth system variables.

MOTIVATION

- Access to groundwater is pivotal for humans and ecosystems that depend on it as freshwater source^{1,2,3} **e** However, we have a limited systematic understanding of the complex interlinkage between groundwater and Ð its environmental controls within the Earth system (here called Earth system variables)^{4,5,6,7}
- Observations play a key role in filling these knowledge gaps^{7,8,9}, but... €
- So far, there is no existing groundwater dataset that: **e**

(1) is global (captures the natural variability of the included variables);

(2) contains time series data that provide insights into temporal patterns (e.g., seasonality), extreme events, and cause-effect lags^{10,11,12};

(2) combines groundwater observations with associated Earth system variables that can be used to explain groundwater dynamics^{8,13,14};

(4) include metadata to improve comparability and the assessment of data uncertainty^{15,5,6}; (5) is standardized and freely available according to the FAIR principles^{15,16,17}.

→ Therefore, we developed GROW (global integrated GROundWater package), a quality-controlled dataset that accompanies groundwater depth and level time series from around the world with associated Earth system variables

THE DATASET CONTAINS

in italics.

Atmosphere Geosphere Hydrosphere Cyrosphere • Precipitation^{20,21} • Ground elevation²⁶ Snow depth²² • Distance between Potential Glacier cover³⁴ • Topographic slope²⁷ perennial Evapotranspiration^{22,33} streams³³ • Permafrost cover³⁴ Rock type²⁸ Actual • Drainage Rock permeability²⁹ evapotranspiration²³ Rock porosity³⁰ density³⁴ • Aquifer type^{28,31} • Air temperature²² Saturated hydraulic conductivity Köppen-Geiger classification²⁴ for topsoil and subsoil³² • Hydrobelts²⁵ • Soil texture class for topsoil and subsoil³²

< 0.01

< 0.01

0.17

	Dally	
Mid	0.77	
Latitude		
Sub	0.14	
Tropical		
Dry	0.04	
Equatorial	0.01	
Boreal	0.04	
lce	0	

Figure 2 - Distribution of selected Earth system variables in the GROW dataset compared with their global distribution: This overview is showing the distribution of the following Earth system variables in GROW classified by temporal resolution of the time series in comparison to the global range of the respective variable: a) the fraction of Hydrobelt classes as a stacked bar chart and b) the fraction of main land use as stacked bar chart, c) ground elevation (not full value range), d) distance between perennial streams (not full value range), e) permafrost cover in surface catchment and f) NDVI as box plot. Box plots show the median of a distribution as a black line inside the box. The upper and lower edges of the box are determined by the 25th and 75th percentiles (interquartile range). Whiskers indicate the farthest data point within 1.5 times the interquartile range. Outliers outside this range are displayed as dots. Below the plots, a table with either the respective fractions per class and group or the min, median and max value per group is given.

Cropland

Urban Area

< 0.02

0.01

0.31

0.04

< 0.01

OUTLOOK

- groundwater dynamics in the context of the Earth system. For example:
- with machine learning or principal component analysis) the same environmental conditions
- dataset for global hydrological, land-surface, or climate modeling
- underrepresented in the current dataset
- the addition of new data

GROUNDWATER ASSOCIATED EARTH SYSTEM VARIABLES

Table 1: List of all 34 Earth system variables that were merged with the groundwater data classified by Earth system component. In contrast to attribute variables, time series are written

0.25

0.74

max

With GROW, we offer a dataset to the global community that can be used to understand spatiotemporal

Cumulative effects of multiple controls on groundwater time series can be studied in space and time (e.g.

Processes conceptualized for specific environmental settings can be transferred to regions with no data but

The standardized groundwater time series in GROW provide a ready-to-use calibration and validation

Still, GROW inherits uncertainty from the groundwater observations (e.g. spatial data bias) and Earth system variables (e.g. model uncertainty, interpolation errors, commensurability errors). To reduce uncertainty: GROW can benefit from additional groundwater time series and metadata, especially from regions that are

GROW is envisioned to evolve into a dynamic community dataset that continually grows and benefits from

Biosphere

- Interception loss²³
- *NDVI*³⁵
- Leaf Area Index of low vegetation²²
- Leaf Area Index of high vegetation²²
- Groundwater dependent ecosystem³⁶

Anthroposhere

- Total water withdrawal for domestic use³⁷
- Total water withdrawal for industrial use³⁷
- Land use fractions (Forest and Natural Vegetation, pastures, rainfed cropland, irrigated cropland, urban area)³⁸ • Groundwaterscapes³⁹

Descriptive statistics of NDVI in GROW and globally

Descriptive statistics of distance between perennial streams in km in GROW and globally				
	Daily	Monthly	Yearly	Global
min	0.4	0.4	0.2	0
median	5.1	6.2	6.6	8.1
max	1215.1	1096	1215.5	1960.9