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In computational plasma physics, kinetic models are used to simulate plasma phenomena where small » Hyperparameters: STLSQ algorithm with threshold 250 and sparsity constant 102

scale physics is expected to be of importance. These models contain the full information on the » Candidate terms comprise terms with correct dimensions inspired by works of [6, 8] and analytical closures [11, 2, 12]
particle velocity distribution function but are computationally expensive. Therefore, computationally Ground Truth Learned Closure H2 _Ground Tuth
cheaper models are utilized, which can then be deployed to larger scales e. g. 10-moment fluid models o 10 1 : 0 oo
or magnetohydrodynamics (MHD). However, the large scale behavior is critically influenced by small 3 2 00002 b0002
] i ] ] ] . . 5 0 5 0 © 0.0000 0.0000 ©
scale behavior [4, 10, 9]. Thus, models are required that can include kinetic processes, in reduced form, ) ~0.0002 ~0.0002
into large scale simulations. At the moment, analytical closures are used to close the hierarchy of fluid o IR T o MR - D L o
equations, but these closures, i.e. Landau fluid closures, are strictly valid only in certain regimes [7]. < Ng-+2020 Wang-+2015 g ngraon -
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Finding suitable cIosure. equations is an ongoing resez.arch topic that get_s mcrea.smgly more d.lfﬁcult In " 0 S o 2 o -
complex systems. In this study, we try to improve fluid models by learning a suitable symbolic closure T . 2 : 50000 oo £
for the heat flux by applying the sparse identification of nonlinear dynamics (SINDy) method [3] to 050 050 N ~0.0001 oon
data from kinetic simulations of the two stream instability and Landau damping (see poster X5.198 a6 o R W <5002 - ——
for a direct prediction of the heat flux with ML). 1 w33 g

Figure 2: Comparison of the learned closure (H2), analytical closure equations, and the true divergence of  Figure 3: Comparison of learned (H4, H5) and analytical closure equations as well as the true divergence of
the electron heat flux at a given time for the two stream instability data (TS2). the electron heat flux at a given time for the Landau damping data (LD).
_ Table 1: Best results learning a closure equation for the divergence of the heat flux in case of Landau damping (LD) and the two-stream instability (TS)
with SINDy. kq/ds was set to 1 for the training and can be computed from the learned coefficients. Analytical Closures
Vlasov equation (collisionless): Moments of the Vlasov equation: No. sim. Learned Closure Equation (SINDy) > Ng-+2020 [11]:
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Coefficients were rounded to the fourth digit. The indices denote the components of the quantities.

ay i, lxoy zatayzzy® 22 & &,

» The coefhicients = Of_ candidate terms © are optimizec_i to r.natch the. ::, » Learned closure equation fits the ground truth better (TS) or similarly (LD) than typical analytical closure equations.
value of the state v.ar.|ab|es_X evaluated at. different grid points and times. - it » However, both the identified candidate terms (see H4 and H5) and the learned coefficients (H1, H2 and H3) depend not

> Together, the coefficients = and the candidate terms © represent a only on the physical problem, but also with the initial conditions of this simulation. This may hinder applicability of the
sparse symbolic equation for the divergence of the heat flux. S learned closures to fluid simulations.

> The optimization algorithm sequential thresholded least-squares (STLSQ) » [ he validation of the learned closures in 10-moment simulations compared to the analytical closures and fully kinetic

—_

5] is employed and includes the hyperparameters threshold and sparsity. X ox) simulations requires further investigation.
Figure 1: Schematic of the SINDy algorithm [5].
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