
RUHR-UNIVERSITÄT BOCHUM
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Abstract

In computational plasma physics, kinetic models are used to simulate plasma phenomena where small
scale physics is expected to be of importance. These models contain the full information on the
particle velocity distribution function but are computationally expensive. Therefore, computationally
cheaper models are utilized, which can then be deployed to larger scales e. g. 10-moment fluid models
or magnetohydrodynamics (MHD). However, the large scale behavior is critically influenced by small
scale behavior [4, 10, 9]. Thus, models are required that can include kinetic processes, in reduced form,
into large scale simulations. At the moment, analytical closures are used to close the hierarchy of fluid
equations, but these closures, i. e. Landau fluid closures, are strictly valid only in certain regimes [7].
Finding suitable closure equations is an ongoing research topic that gets increasingly more difficult in
complex systems. In this study, we try to improve fluid models by learning a suitable symbolic closure
for the heat flux by applying the sparse identification of nonlinear dynamics (SINDy) method [3] to
data from kinetic simulations of the two stream instability and Landau damping (see poster X5.198
for a direct prediction of the heat flux with ML).

Closure Problem

Vlasov equation (collisionless):
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Closure equation needed for k + 1-th moment (red term)!

Methods: Sparse Identification of nonlinear dynamics (SINDy) [5]

▶The coefficients Ξ of candidate terms Θ are optimized to match the
value of the state variables X evaluated at different grid points and times.

▶Together, the coefficients Ξ and the candidate terms Θ represent a
sparse symbolic equation for the divergence of the heat flux.

▶The optimization algorithm sequential thresholded least-squares (STLSQ)
[5] is employed and includes the hyperparameters threshold and sparsity.

Figure 1: Schematic of the SINDy algorithm [5].

Data

▶ Simulations of the two stream instability (TS) and Landau damping (LD) are run with the fully
kinetic Vlasov module in the muphyII framework [1].

▶Physical parameters: weight of the streams χ ∈ {0.4, 0.5}, drift velocity vd ∈ {1, 2}vth with the
thermal velocity vth, density n0 = 1, initial temperature Te,i0 = 0.1 (TS) and Te,i0 = 1 (LD)

▶TS1: χ = 0.5, vd = 1vth; TS2: χ = 0.4, vd = 1vth; TS3: χ = 0.4, vd = 2vth

Results: Closure Equation for the Divergence of the Electron Heat Flux

▶Hyperparameters: STLSQ algorithm with threshold 250 and sparsity constant 10−2

▶Candidate terms comprise terms with correct dimensions inspired by works of [6, 8] and analytical closures [11, 2, 12]

H2

Figure 2: Comparison of the learned closure (H2), analytical closure equations, and the true divergence of
the electron heat flux at a given time for the two stream instability data (TS2).

Figure 3: Comparison of learned (H4, H5) and analytical closure equations as well as the true divergence of
the electron heat flux at a given time for the Landau damping data (LD).

Table 1: Best results learning a closure equation for the divergence of the heat flux in case of Landau damping (LD) and the two-stream instability (TS)
with SINDy. k0/de0 was set to 1 for the training and can be computed from the learned coefficients.

No. sim. Learned Closure Equation (SINDy)

H1 TS1 −3.0648pxx∂xux
H2 TS2 −3.2144pxx∂xux
H3 TS3 −3.8028pxx∂xux
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Coefficients were rounded to the fourth digit. The indices denote the components of the quantities.

Analytical Closures
▶Ng+2020 [11]:
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Summary and Outlook

▶ Learned closure equation fits the ground truth better (TS) or similarly (LD) than typical analytical closure equations.

▶However, both the identified candidate terms (see H4 and H5) and the learned coefficients (H1, H2 and H3) depend not
only on the physical problem, but also with the initial conditions of this simulation. This may hinder applicability of the
learned closures to fluid simulations.

▶The validation of the learned closures in 10-moment simulations compared to the analytical closures and fully kinetic
simulations requires further investigation.
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[8] E. R. Ingelsten, M. C. McGrae-Menge, E. P. Alves, and I. Pusztai. Data-driven discovery of a heat flux closure for electrostatic plasma phenomena, Nov. 2024.

[9] A. Micera, D. Verscharen, J. T. Coburn, and M. E. Innocenti. Quasi-parallel anti-sunward propagating whistler waves associated to the electron-deficit in the near-Sun solar wind: Particle-in-Cell simulation, Jan. 2025.
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