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Problem statement 
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Streamflow forecasting incorporates various parameters 

Meteorological data, Hydrological models, and Historical data;

Importance of streamflow forecasting 

Flood and water resource management, environmental monitoring, climate change 

adaptation, and informed decision making;

Challenges in poorly gauged basins

Data scarcity, climate variability and change, human intervention, and inadequate 

infrastructure;

Innovative approaches to overcome data limitations and improve forecasting 

accuracy

Geo-spatiotemporal models, mesoscale data, Attention-based networks



Geo-spatiotemporal features

Meteorological data (such as temperature, precipitation, humidity, 

and wind speed);

Geographic locations, time stamps, and related attributes

Data Preprocessing 

Cleaning the data, normalizing the data, and dealing with 

missing data

PCA

Dimension Reduction

Remote sensing 

In-situ data

Improve forecasting accuracy
Introduction Method Results

Feature engineering

Cascade dimensionality reduction for feature extraction, Cross-

correlation analysis, Feature selection

Model development

Advanced algorithms, optimization, and validation for geo-

spatiotemporal modeling.
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Transformer Informer Probabilistic Informer

Bayesian LSTM

Attention-based architecture   

Model Input Encoding Attention Style Strengths Limitations

SageFormer
GNN (label 

encoding)

Spatial + 

Temporal

Graph-based 

spatiotemporal learning

Needs graph structure, more 

complex

Informer
CNN + Time 

features

ProbSparse 

Attention

Efficient, long-sequence 

forecasting

Less spatial modeling, 

heuristic pruning

Transformer Linear + Positional Full Self-Attention
General, deep temporal 

dependencies

O(L²) cost, no feature relation 

modeling

Three attention-based networks

Introduction Method Results
Advanced probabilistic algorithms 
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Adopted methodology 

Visualization of interdependencies among geo-spatiotemporal data, highlighting the 

complex relationships and interactions between dimensions

Convert high-dimensional geo-spatiotemporal data into 

lower-dimensional representations (Spatiotemporal 

Space ) that still capture essential variability.

Why High Dimensionality is Problematic?

• Computational Complexity:
High-dimensional datasets significantly increase computation cost and processing time.

• Overfitting Risk:
With many features (spatial grid points over time), machine learning models can become prone to 

overfitting, degrading prediction accuracy.

• Redundant Information:
Satellite-derived data often contains redundant information (spatial correlation) across adjacent grid 

points.

• Curse of Dimensionality:
As dimensions grow, data points become sparse, causing performance deterioration and reducing 

statistical significance

Introduction Method Results

April 2025               6/17

Home 
with solid
fill



Proposed Framework
Introduction Method Results
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Solution Framework
Introduction Method Results
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➢ Optimum Interpolation Sea Surface Temperature 

➢ NOAA nClimGrid-Daily Version 1

In Situ timeseries 

Mesoscale hydroclimate datasets

Introduction Method Results
Case study
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Geo-spatiotemporal correlation between streamflow and (a) Precip, (b) Tavg, (c) Tmin, (d) Tmax, (e) sea surface temperature 

(SST), and (f) anomaly SST. 
The red areas represent a negative correlation, and the green areas represent a positive correlation.

Number of selected grids for each feature in each case 

study, along with the number of features extracted for 

each variable for initial and cascaded PCA

Introduction Method Results
Geo-spatiotemporal correlation analysis
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7-day forecasting

Introduction Method ResultsTwo-year test dataset, Case study 1

SageFormer

Transformer

Informer

PLSTM

30-day forecasting
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Introduction Method ResultsTwo-year test dataset, Case study 1

SageFormer

Transformer

Informer

PLSTM

60-day forecasting 180-day forecasting
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Back-tested probabilistic daily flood forecasting 

results for separately trained models of

 SageFormer network

with different look-back periods corresponding to 

forecast horizons:

 7-day forecast (372-day look-back)

 30-day forecast (395-day look-back)

60-day forecast (425-day look-back)

180-day forecast (545-day look-back)

(a)

(b)

(c)

(d)

Introduction Method Results
Back-tested probabilistic daily forecasting 
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Back-tested probabilistic daily flood forecasting 

results for separately trained models of

 Transformer network

with different look-back periods corresponding to 

forecast horizons:

 7-day forecast (372-day look-back)

 30-day forecast (395-day look-back)

60-day forecast (425-day look-back)

180-day forecast (545-day look-back)

(a)

(b)

(c)

(d)

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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Back-tested probabilistic daily flood forecasting 

results for separately trained models of

 PLSTM network

with different look-back periods corresponding to 

forecast horizons:

 7-day forecast (372-day look-back)

 30-day forecast (395-day look-back)

60-day forecast (425-day look-back)

180-day forecast (545-day look-back)

(a)

(b)

(c)

(d)

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Introduction Method Results
Back-tested probabilistic daily forecasting 
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Conclusion

• SageFormer exhibited superior performance in terms of forecast sharpness (lowest MPIW) and overall accuracy 

(lowest CRPS) across all forecasting horizons, emphasizing its capability to reliably predict flood events even months in 

advance.

• Informer offered significant computational advantages, achieving accuracy comparable to Transformer but with reduced 

complexity, making it particularly suitable for resource-constrained operational contexts.

• Attention-based models effectively calibrated their uncertainty estimates, as indicated by PICP values closely matching 

nominal prediction intervals (75–95%), thus offering valuable decision-making support during extreme hydrological 

events.

• PLSTM, despite generating wide prediction intervals, consistently underperformed in capturing critical peaks and failed 

to provide precise uncertainty quantification, demonstrating inherent limitations of recurrent architectures in extended 

probabilistic forecasting scenarios.

• SageFormer, Transformer and Informer maintained stable performance across increasing forecast horizons, likely 

benefiting from their autoregressive architectures and progressively enriched historical context, underscoring the 

importance of attention mechanisms for managing long-range hydrological dependencies.
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