Enhancing Streamflow Prediction in Vulnerable Regions through Probabilistic Deep Learning and Satellite-Derived Data

<u>Fatemeh Ghobadi</u>¹, Amir Saman Tayerani Charmchi¹, JungMin Lee², Myeong In Kim², and Kichan jung¹

¹ Department of Digital Convergence, Onpoom Co., LTD, Seoul, South Korea ² Land and Housing Research Institute, Daejeon, 34047, Korea

Contents

1. Introduction

- 2. <u>Materials and methods</u>
 - <u>Proposed framework</u>
- 3. <u>Results</u>
- 4. <u>Conclusion</u>

Problem statement

Streamflow forecasting incorporates various parameters

Meteorological data, Hydrological models, and Historical data;

Importance of streamflow forecasting

Flood and water resource management, environmental monitoring, climate change adaptation, and informed decision making;

Challenges in poorly gauged basins

Data scarcity, climate variability and change, human intervention, and inadequate infrastructure;

Innovative approaches to overcome data limitations and improve forecasting accuracy

Geo-spatiotemporal models, mesoscale data, Attention-based networks

Introduction

Method

Results

Improve forecasting accuracy

Geo-spatiotemporal features

Meteorological data (such as temperature, precipitation, humidity, and wind speed);

Geographic locations, time stamps, and related attributes

Data Preprocessing

Cleaning the data, normalizing the data, and dealing with missing data

Feature engineering

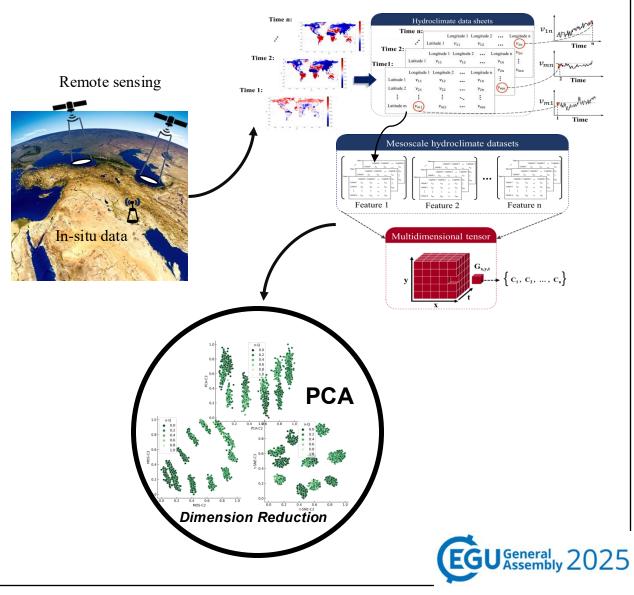
Cascade dimensionality reduction for feature extraction, Cross-

correlation analysis, Feature selection

Model development

Advanced algorithms, optimization, and validation for geo-

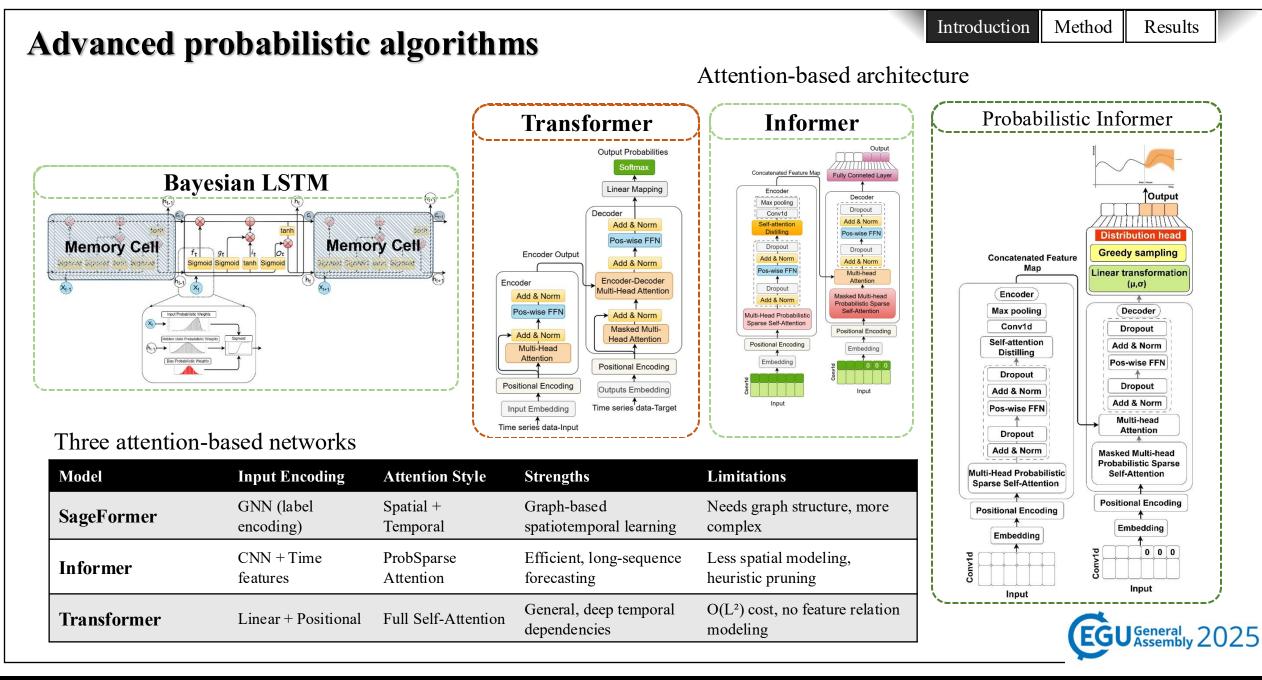
spatiotemporal modeling.



Introduction

Method

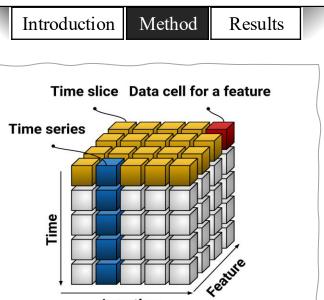
Results



Adopted methodology

Longitude

Time series



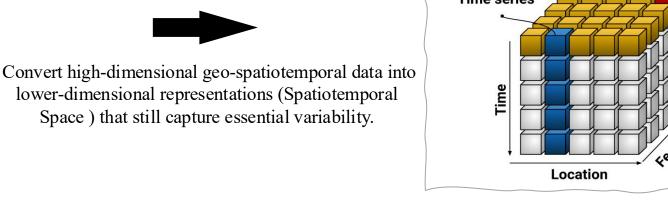
Why High Dimensionality is Problematic?

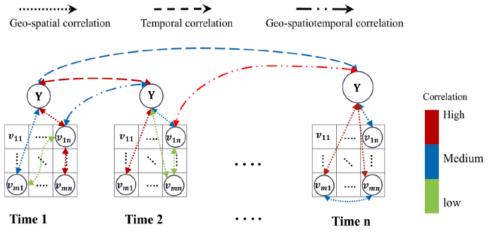
- Computational Complexity: High-dimensional datasets significantly increase computation cost and processing time.
- Overfitting Risk:

With many features (spatial grid points over time), machine learning models can become prone to overfitting, degrading prediction accuracy.

- Redundant Information: Satellite-derived data often contains redundant information (spatial correlation) across adjacent grid points.
- Curse of Dimensionality:

As dimensions grow, data points become sparse, causing performance deterioration and reducing statistical significance





Time

Data cell for features

 $\{F_1, F_2, ..., F_n\}$

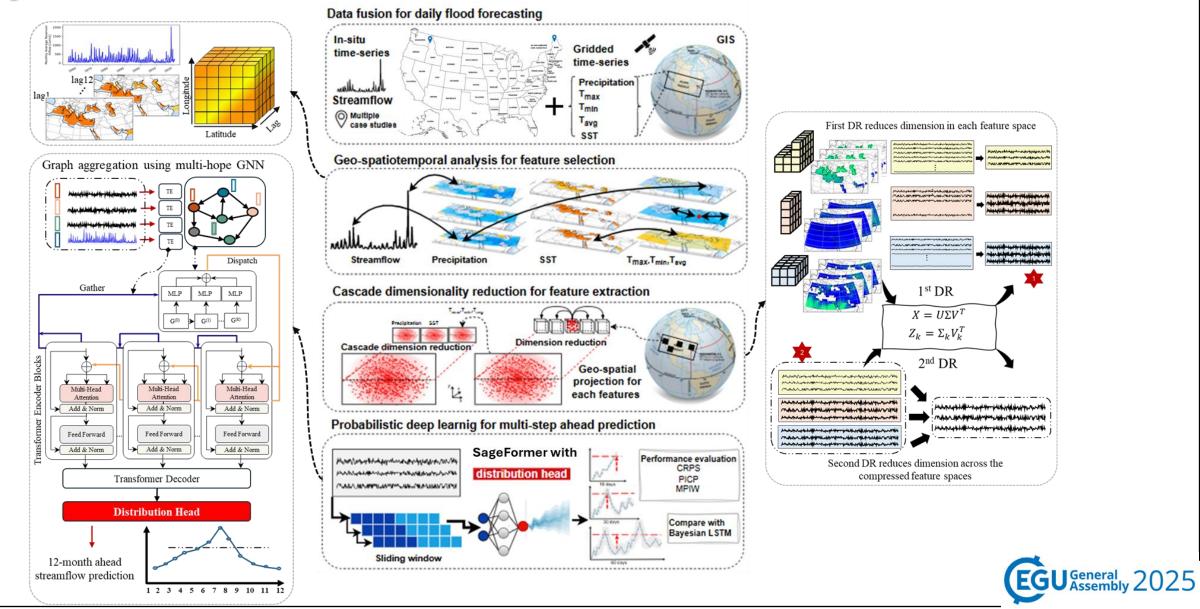
Time slice

Visualization of interdependencies among geo-spatiotemporal data, highlighting the complex relationships and interactions between dimensions

April 2025

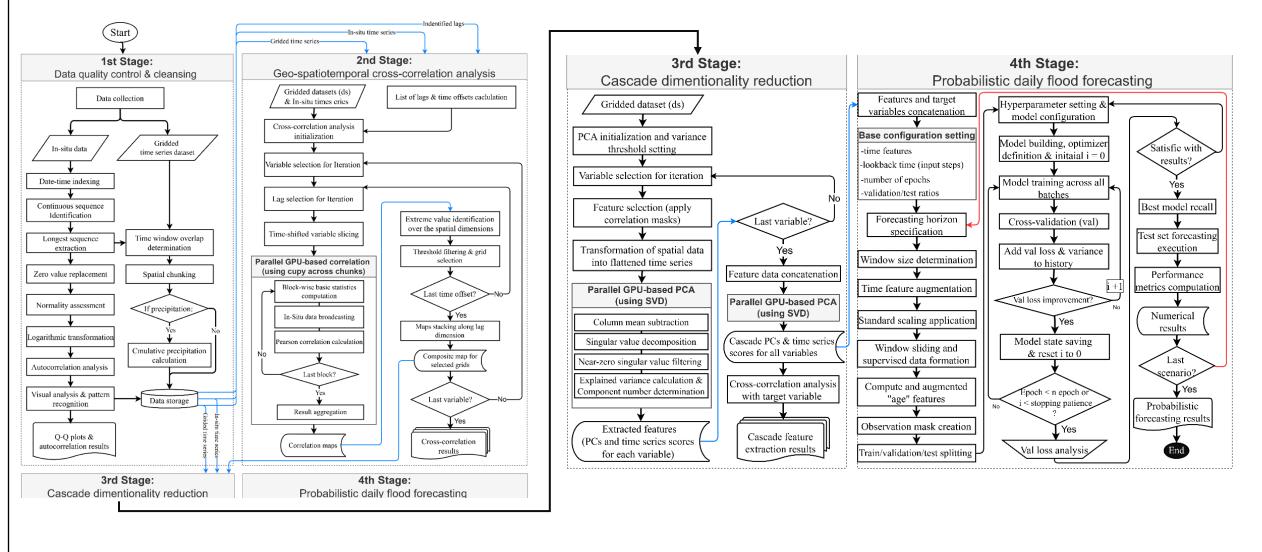
Latitude

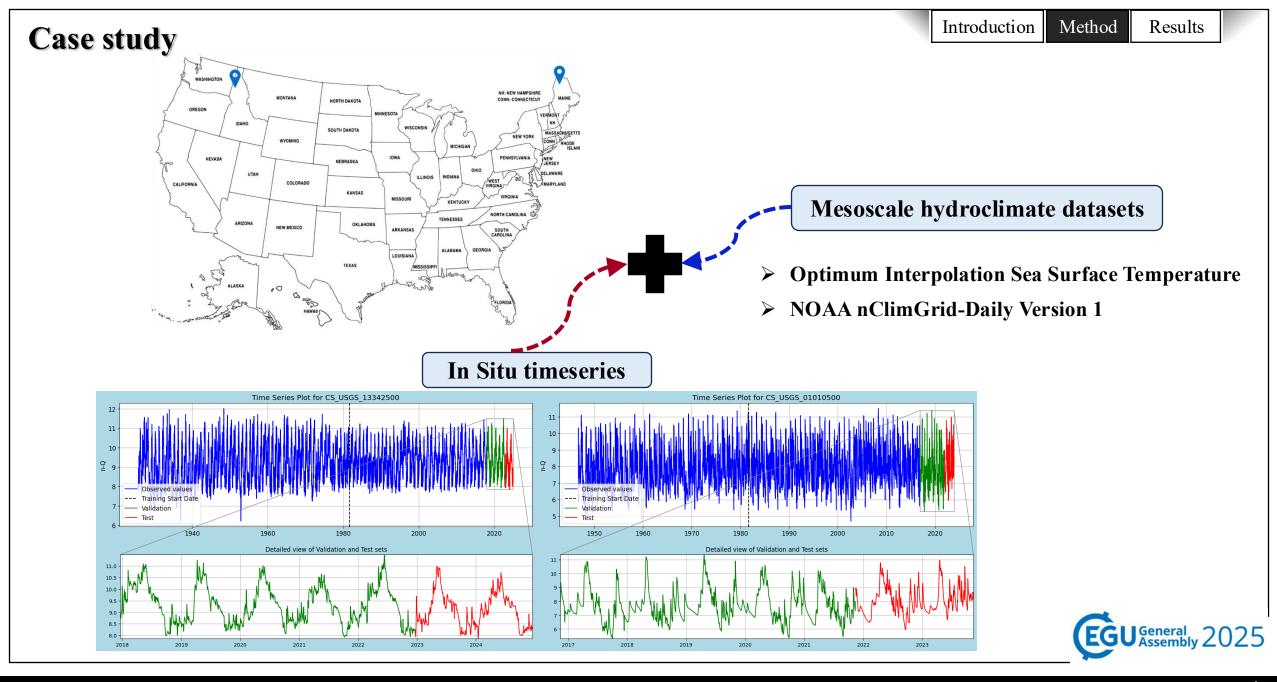
Proposed Framework



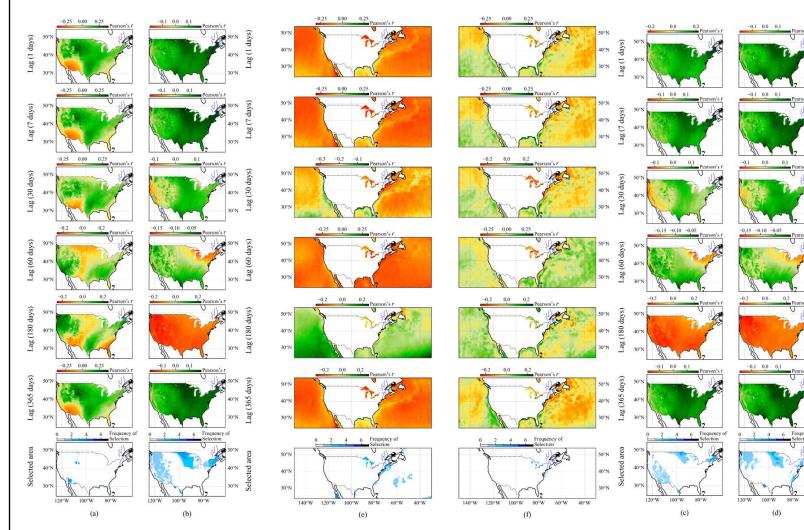
April 2025

Solution Framework





Geo-spatiotemporal correlation analysis



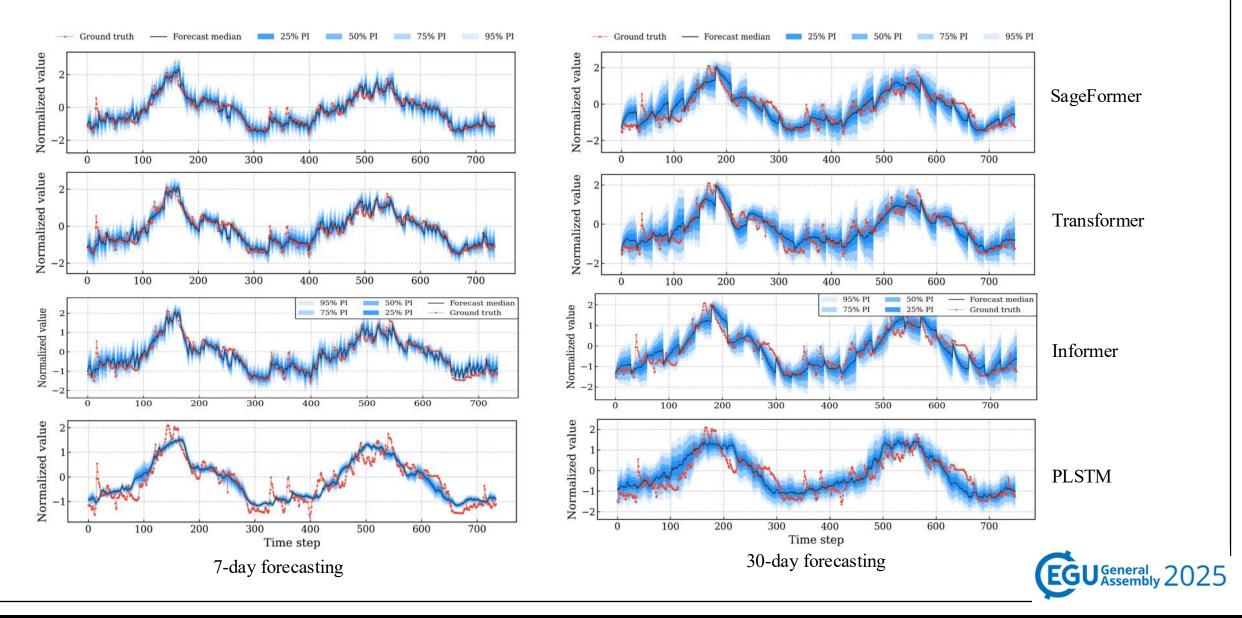
Number of selected grids for each feature in each case study, along with the number of features extracted for each variable for initial and cascaded PCA

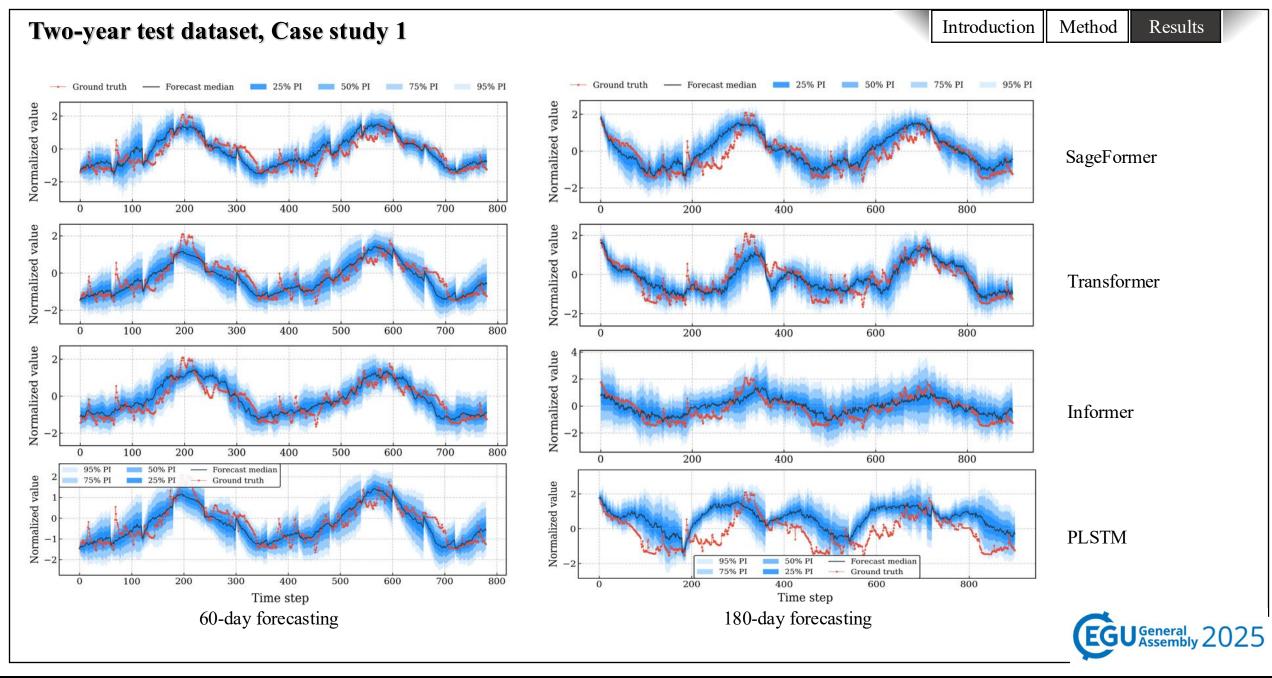
~ .	Features	No. of	No. of principal components	
Case study		selected grids	Initial PCA	
USGS- 1010500	Precip	120	3	
USGS- 13342500	T_{avg}	63	3	
	T _{min}	100	3	21
	T _{max}	50	3	
	SST	230	3	
	Anomaly SST	19	19	
	Precip	400	3	
	Tavg	100	4	
	T_{min}	200	4	22
	T _{max}	120	5	
	SST	150	5	
	Anomaly SST	130	15	

Geo-spatiotemporal correlation between streamflow and (a) Precip, (b) Tavg, (c) Tmin, (d) Tmax, (e) sea surface temperature (SST), and (f) anomaly SST.

The red areas represent a negative correlation, and the green areas represent a positive correlation.

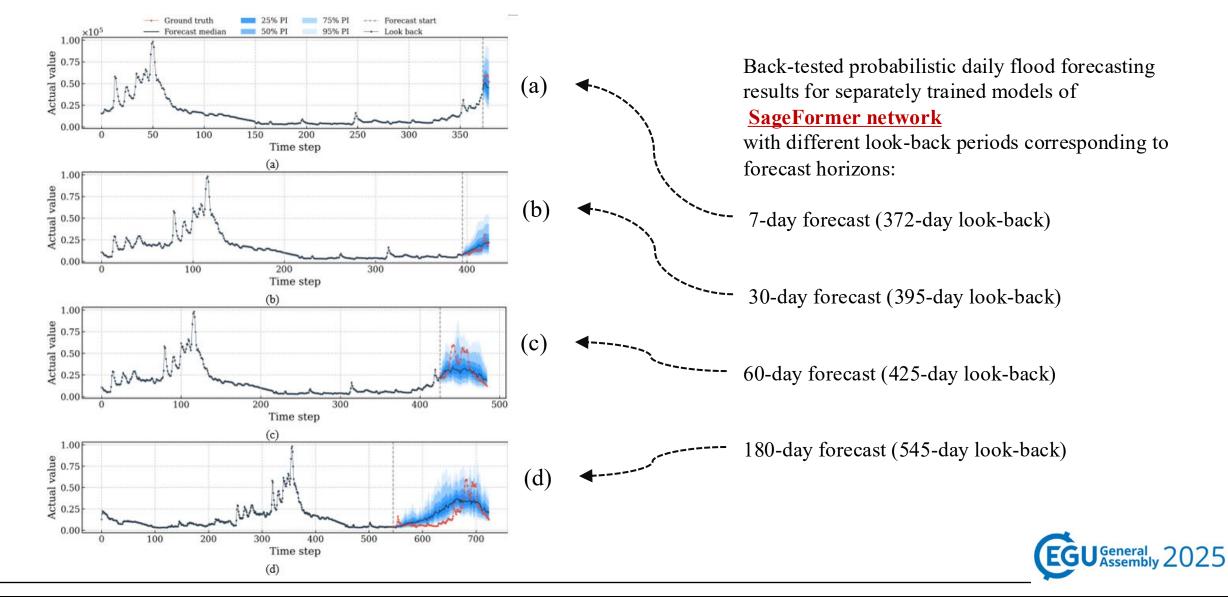
Two-year test dataset, Case study 1



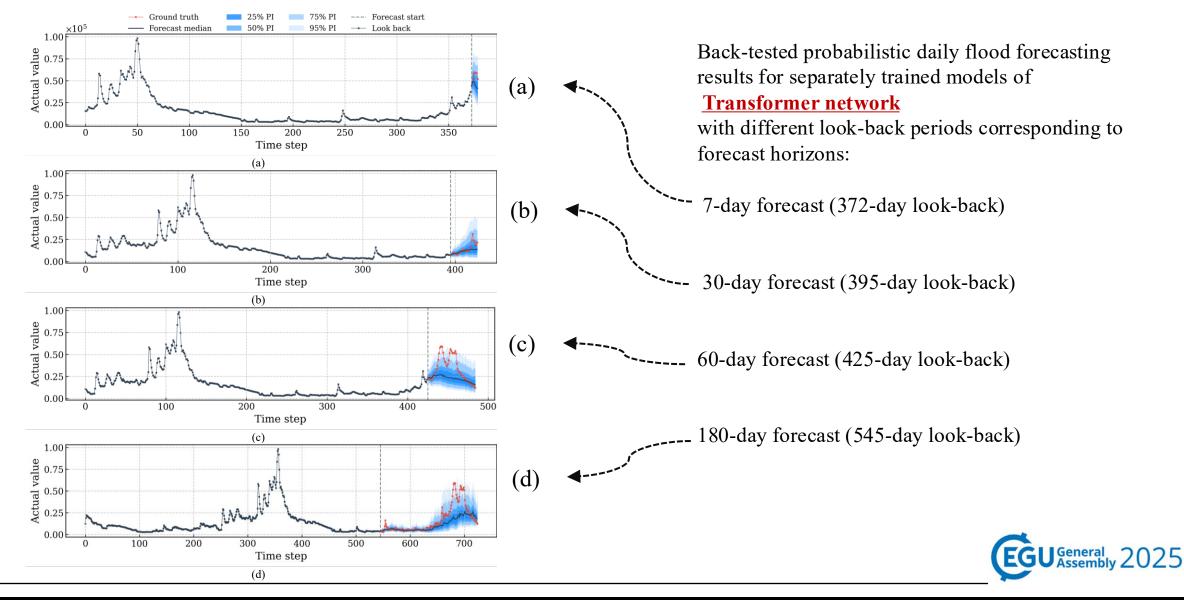


April 2025

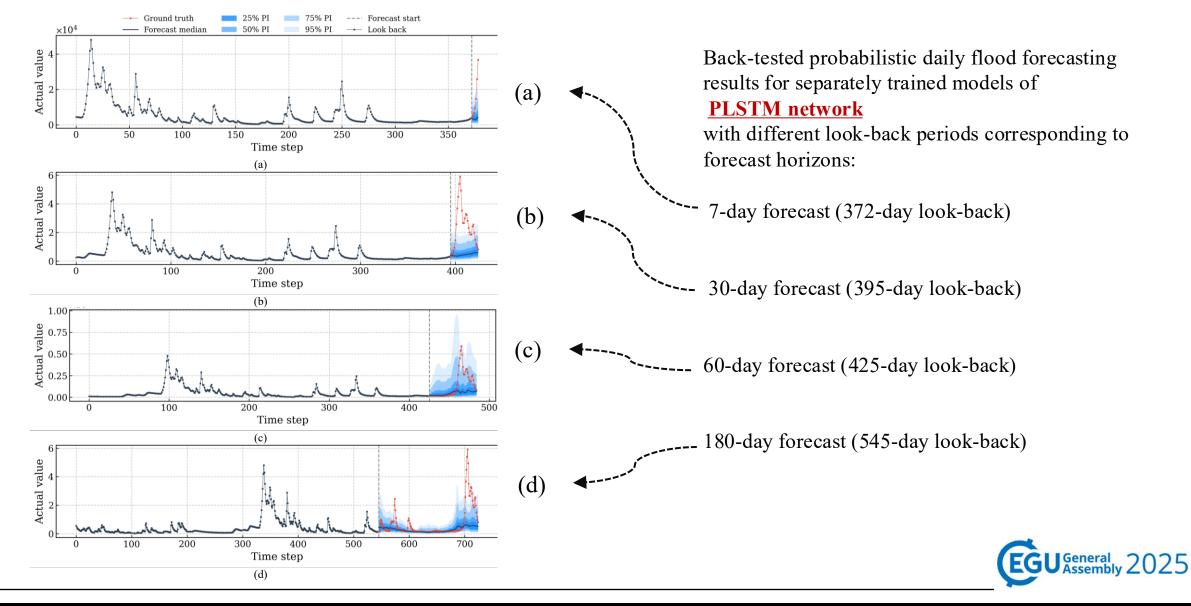
Back-tested probabilistic daily forecasting



Back-tested probabilistic daily forecasting



Back-tested probabilistic daily forecasting



Conclusion

- **SageFormer** exhibited superior performance in terms of forecast **sharpness** (lowest MPIW) and **overall accuracy** (lowest CRPS) across all forecasting horizons, emphasizing its capability to reliably predict flood events even months in advance.
- Informer offered significant computational advantages, achieving accuracy comparable to Transformer but with reduced complexity, making it particularly suitable for resource-constrained operational contexts.
- Attention-based models effectively calibrated their uncertainty estimates, as indicated by PICP values closely matching nominal prediction intervals (75–95%), thus offering valuable decision-making support during extreme hydrological events.
- PLSTM, despite generating wide prediction intervals, consistently underperformed in capturing critical peaks and failed to provide precise uncertainty quantification, demonstrating inherent limitations of recurrent architectures in extended probabilistic forecasting scenarios.
- SageFormer, Transformer and Informer maintained stable performance across increasing forecast horizons, likely benefiting from their autoregressive architectures and progressively enriched historical context, underscoring the importance of attention mechanisms for managing long-range hydrological dependencies.

감사합니다 THANK YOU FOR YOUR ATTENTION

Fatemeh Ghobadi 🛛 🖾 Ghobadi@khu.ac.kr

April 2025

