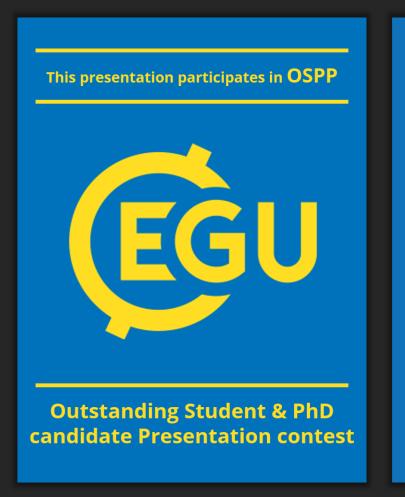


www.mba-group.agh.edu.pl

Removal of zearalenone mycotoxin with kaolin group-based photocatalysts: **Exploration of mechanisms and photodegradation pathways**

<u>Klaudia Dziewiątka¹, Jakub Matusik¹, Marcel Herber², Eric H. Hill², Joanna Kuc³</u>



This project was supported by the National Science Centre Poland, under a research project awarded by Decision No. 2021/43/B/ST10/00868.

¹ Department of Mineralogy, Petrography and Geochemistry, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, Kraków, Poland. ² Institute of Physical Chemistry, Universitat Hamburg, Hamburg, Hamburg, Germany. ³ Faculty of Chemical Engineering and Technology, Cracow University of Technology, Kraków, Poland.

IPs hazard category

Estimated toxicity results for ZEN and the main identified intermediate products (IPs) after photodegradation with the studied photocatalysts, obtained using

m/z	Compound	Molecular formula	Acute toxicity (mg/L)			Chronic toxicity (mg/L)		
			Fish	Daphnid	Algae	Fish	Daphnid	Algae
			(LC50)	(LC50)	(EC50)	(ChV)	(ChV)	(ChV)
499.0	K	C ₁₈ H ₂₆ O ₁₆	4.21	15.7	15.7	0.90	46.5	52.9
495.4	J	C ₁₈ H ₂₆ O ₁₄	2.18	5.75	6.62	0.33	11.7	18.0
338.0	I	$C_{18}H_{26}O_{6}$	54.4	301	35.8	26.2	107	5.45
317.2	ZEN	C ₁₈ H ₂₂ O ₅	1.95	8.13	1.95	0.84	2.76	0.33
293.3	G	C ₁₇ H ₂₆ O ₄	4.57	25.0	3.05	2.19	8.86	0.47
249.1	F	C ₁₅ H ₂₂ O ₃	1.81	7.95	1.68	0.799	2.72	0.28
217.1	E	C ₁₅ H ₂₂ O	1.20	0.86	1.60	0.153	0.16	0.69
155.0	D	C ₈ H ₁₂ O ₃	1.92E+3	1.29E+3	3.79E+3	3.41E+3	92.2	136
147.0	С	C ₈ H ₁₈ O ₂	236	130	85.5	22.3	11.7	20.9
141.1	В	C ₇ H ₁₀ O ₃	444	571	225	376	3.23	50.2
119.2	Α	C ₆ H ₁₄ O ₂	1.45E+3	731	331	123	51.0	66.2

*To determine the appropriate hazard category of the compounds, the lowest acute toxicity values within and between different trophic levels (fish,

> White boxes, not harmful: LC50/EC50/ChV > 100 blue boxes, harmful: 100 ≥ LC50/EC50/ChV > 10 green boxes, toxic: 10 ≥ LC50/EC50/ChV > 1 yellow boxes, very toxic: LC50/EC50/ChV \leq 1

Conclusions

• Kaolinite nanotubes combined with GCN and the TiO₂/GCN mixture achieved the highest ZEN removal efficiencies - 98.8% and 97.7%, respectively - after 25 min of UV irradiation from an initial concentration of 10 ppm.

• Scavenger experiments and EPR measurements **identified** O₂•⁻ and •OH radicals as the key reactive species responsible for ZEN photodegradation. • TRPL measurements demonstrated **prolonged charge carrier lifetimes** in materials containing kaolinite nanotubes and GCN.

• CLV confirmed the presence of charge traps in the photocatalyst structure,

• The proposed ZEN degradation pathways involved hydrolysis, oxidation, and **cleavage reactions**, resulting in intermediate products with both lower and

