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Abstract 7 

Precise estimation of hydraulic conductivity (K) in porous media is vital for advancing 8 

hydrological and subsurface flow investigations. Groundwater experts have increasingly 9 

adopted neural computing approaches to indirectly determine K in porous media, offering a 10 

more efficient alternative to conventional methods. The research focuses on developing the 11 

Feed-Forward neural network (FFNN) and Kohonen Self-organizing maps (KSOM) models 12 

to compute the K using easily measurable porous media parameters i.e., grain-size, 13 

uniformity coefficient, and porosity. The observed data were split into 70% and 30% for the 14 

development and validation phase, respectively. The developed model's performance was 15 

examined via statistical indicators, including root mean square error (RMSE), determination 16 

coefficient (R²), and mean bias error (MBE). The findings suggest that the FFNN model 17 

significantly outperforms the KSOM model in estimating the K value, with the KSOM model 18 

achieving only moderate accuracy. During the validation phase, the FFNN model shows a 19 

stronger correlation with the measured values, yielding RMSE, R², and MBE values of 0.016, 20 

0.94, and 0.006, while the KSOM model returns values of 0.024, 0.91, and -0.004 21 

respectively. The FFNN model's superior predictive ability makes it a reliable tool for 22 

accurate K estimation in aquifers. 23 

Keywords: Hydraulic conductivity, KSOM, FFNN, Porosity.  24 

Introduction 25 

For porous media, an accurate assessment of hydraulic conductivity (K) is fundamental for 26 

the analysis of aquifers and subsurface flow processes (Lee et al. 2015). Hydraulic 27 

conductivity measures the ease of fluid particle movement through the voids of the soil mass 28 

(Lu et al. 2012). The key independent variables that govern the K of porous media include 29 

particle uniformity, porosity, compaction density, and grain-size (Wang et al. 2017). For the 30 

measurement of K, numerous direct and indirect techniques can be utilized. Direct techniques 31 

encompass a range of experimental and field methods, including the Permeameter tests 32 

(Constant and Falling head), and the Guelph permeameter & pumping test (Pucko & 33 

Verbovsek 2015). The difficulty in assessing K in the field arises from inadequate insight into 34 

the hydraulic boundaries and aquifer characteristics (Chandel et al. 2022b). In contrast, 35 

experimental K approaches are hindered by the difficulty of collecting samples that 36 

accurately represent the in-situ field condition of soil mass (Riha et al. 2018).  37 

As a result, indirect techniques i.e., empirical equations & data-driven approaches, emerged 38 

and gained prominence for estimating the K of porous media using readily measurable 39 

properties (Akbulut 2005). The use of empirical equations is limited to their intended 40 
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domains, as they were formulated under specific conditions, which may lead to random 41 

inaccuracies in K calculations (Odong 2007; Chandel & Shankar 2022). 42 

In recent decades, the use of data-driven approaches has expanded across numerous areas of 43 

hydraulic and groundwater engineering (Williams & Ojuri 2021). These approaches excel in 44 

carrying out the complicated tasks of modeling, training, and validating data points, which 45 

are attained from laboratory work (Thakur et al. 2022). These approaches are categorized into 46 

supervised learning, which relies on defined input and output data pairs, and unsupervised 47 

learning, where input and output data pairs are not specified (Sen et al. 2019). The enhanced 48 

prediction efficacy of these techniques, compared to traditional methods, has led to their 49 

widespread adoption across various domains of irrigation, hydraulics, and groundwater 50 

engineering (Kumar et al. 2020). 51 

Neural computing models incorporating Artificial Neural Networks (ANN) and Adaptive 52 

Neuro-Fuzzy Inference Systems (ANFIS) were developed by Yilmaz et al. (2012) using 53 

distinct grain diameters (d10, d30, & d60) to estimate the K of granular media. The study's 54 

findings suggest that the ANFIS model exceeds the performance of the ANN model in 55 

calculating the K value. The effectiveness of three predictive models i.e., ANFIS, ANN, and 56 

Multiple linear regression (MLR) has been explored by Arshad et al. (2013) in calculating the 57 

K value. The evaluation of statistical measures highlights the superior performance of the 58 

ANFIS model compared to the other two models. The efficacy of ANFIS, ANN, and Support 59 

Vector Machine (SVM) was investigated by Naganna and Deka (2019) who suggested that 60 

the ANFIS and ANN technique estimates the K closer to the measured values. Williams & 61 

Ojuri (2021) compared two techniques i.e., MLR and Feed Forward Neural Network (FFNN) 62 

to compute the K value of coarse soil media. Using six input variables for model 63 

development, the study reveals through statistical analysis that the FFNN model provides a 64 

better prediction of K compared to the MLR model.  65 

Although supervised algorithms offer powerful prediction capabilities, missing outliers in the 66 

data can undermine their predictive performance (Kumar et al. 2020). In contrast, the KSOM 67 

based on unsupervised learning, clusters high-dimensional data into a smaller grid map, 68 

revealing the inherent relationships among the involved parameters (Kohonen et al. 1996). 69 

The clustering process enables the effective replacement of missing values using the map’s 70 

characteristics, preventing any disruption in model predictions (Kumar et al. 2020). Existing 71 

literature indicates that the KSOM has not yet been applied to compute the K of granular 72 

media. Besides KSOM, a few researchers have used the FFNN to determine the hydraulic 73 

conductivity value based on various grain-size parameters. In terms of their influence on K, 74 

the uniformity coefficient, porosity, and grain-size are regarded as independent variables in 75 

model development. The main aims of the study are: 76 

1. To develop and validate models using FFNN and KSOM techniques to determine the K 77 

of porous media from measurable grain-size parameters.  78 

2. To examine the efficacy of the FFNN, and KSOM models in estimating K using various 79 

statistical indicators. 80 

Materials and Methodology 81 

Porous media used and Experimental procedure 82 
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This study involved collecting 165 soil samples from the banks of the Beas River in Kangra 83 

District, Himachal Pradesh, India (31°43′N, 75°32′E), for experimental work. Soil samples 84 

were extracted using a thin-walled sampler, designed with a 100 cm penetration length and 85 

an 8.5 cm cross-sectional diameter. The composition of the collected soil samples included 86 

coarse & fine sands, gravel, and silt proportions. Grain-size analysis, performed according to 87 

ASTM (2007) guidelines, was the initial step to assess the grain-size characteristics, yielding 88 

values for d10, d30, d50, and d60 (indicating grain-size at 10%, 30%, 50%, and 60% finer by 89 

weight). The specific gravity of the soil samples, vital for porosity calculation, was 90 

computed through the pycnometer method. Furthermore, K tests were conducted on the soil 91 

samples using a constant head permeameter (Figure 1) with diameters of 5.08, 10.16, and 92 

15.24 cm. 93 

Figure 1. Set-up for measuring the K of soil samples. 94 

A line diagram indicating the K measurement arrangement is presented in Figure 1, featuring 95 

components such as manometers, water supply & overhead water tank, and permeameters. 96 

The permeameters, made from galvanized iron pipes, feature a total and test length of 1 m 97 

and 0.46 m, respectively. The permeameter includes pressure-tapping ports positioned around 98 

its periphery at regular intervals of 0.46 m to measure head differences. A constant head is 99 

maintained by an overhead water tank elevated 2.50 m above the ground, which is 100 

continuously replenished by water from the recirculating tank below. The collected soil 101 

sample’s K was determined using the standard procedure referenced in ASTM (2006). Water 102 

temperature was monitored via a digital thermometer during the experiments, and the K of 103 

the porous media samples was calculated using Darcy's equation (Qiu & Wang, 2015). The 104 

observations collected through experiments were used to develop the FFNN and KSOM 105 

models. For model development, different independent parameters i.e., porosity (n), 106 
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uniformity coefficient (U), and grain-size (d10 & d50) were employed in this study. The use of 107 

three distinct permeameter diameters in the experimental work provided a total of 495 108 

observations from 165 soil samples. The next section covers the data-driven techniques 109 

applied in the study for modeling purposes. 110 

Feed-Forward Neural Network (FFNN) 111 

The FFNN, which is the most popular artificial neural network, undergoes successive forward 112 

and backward passes to achieve minimal error (Dawson & Wilby 2001). The FFNN 113 

architecture, depicted in Figure 2, comprises three layers: input, hidden, and output. The 114 

training process allows the model to store information related to the network architecture and 115 

its synaptic weights. Based on the model's training experience, the model predicts the output 116 

when provided with new input data. The parameters were scaled between -1 and +1 before 117 

being introduced to the network as input data. 118 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Architecture of the FFNN model utilized in the study. 

In the FFNN model, the hidden layer neurons were configured with the sigmoid activation 119 

function, and the output layer neurons were set to use a linear activation function. The 120 

selection of the best-performing network involves a trial-and-error strategy, specifically by 121 

testing the FFNN model with 10 hidden neuron configurations. The trial-and-error strategy is 122 

adopted to optimize the correlation between training datasets and minimize errors, using the 123 

smallest possible number of hidden neurons to mitigate overfitting risks. Figure 2 depicts the 124 

most effective FFNN architecture identified in the present work, containing 5 hidden neurons. 125 

The training network was optimized using the Levenberg-Marquardt learning algorithm, 126 

chosen for its high convergence efficiency and reduced residuals (Kumar et al. 2020). The 127 

development and validation of the FFNN model were carried out in Matlab R2024a, adhering 128 

to the methodology illustrated in Figure 3. 129 
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Figure 3. Flowchart depicting the approach employed for FFNN modelling. 

Kohonen Self-Organizing Maps (KSOM) 130 

The KSOM is a prominent unsupervised neural network model. Through clustering, it 131 

converts complex multidimensional data into a concise relationship. The input signal is 132 

optimized through unsupervised competitive learning using the neurons present on the 133 

Kohonen map (Kohonen et al. 1996). The input data is clustered to produce a pattern that 134 

resembles the output or its adjacent unit (Rustum & Adeloye 2007). As depicted in Figure 4, 135 

the KSOM consists of an interconnected high-dimensional input layer and a low-dimensional 136 

output layer. In the output layer, a grid of M neurons is arranged in two dimensions and the 137 

set of data points in these neurons is identical to those in the input vector. 138 
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Figure 4. Diagram illustrating the BMU in a KSOM. 

The equation (1) is used to determine the M value i.e., neurons in the output layer (Garcia & 139 

Gonzalez 2004).  140 

𝑀 =  5 × 𝑋1 2⁄                                                                (1) 141 

where, X indicates the entire dataset in the training phase.  142 

The KSOM training begins by normalizing the input dataset, equalizing the influence of each 143 

variable on the map's structure. Subsequently, a randomly selected normalized input vector is 144 

picked and presented to each neuron displayed on the map. The KSOM uses Euclidean 145 

Distance (ED) as a measure to locate the code vector closest to the input vector (Rustum & 146 

Adeloye 2007). Figure 4 illustrates that the neuron corresponding to the lowest ED value is 147 

termed the winning neuron or Best Matching Unit (BMU). While the KSOM is capable of 148 

model identification, generalization of the dataset, and prediction purposes (Kumar et al., 149 

2021), this study focuses on its application for K prediction, as illustrated in Figure 5. 150 

 

 

Figure 5. KSOM-based prediction of the missing values within the input vector. 
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The KSOM model is initially formulated by utilizing the input vectors from the training data. 151 

The K values, which were either removed or missing from the validation dataset (presented in 152 

Figure 5), are subsequently provided to the KSOM to find the BMU. The corresponding 153 

values in the BMU were utilized to compute the missing K values. The development and 154 

validation of the KSOM model were carried out in Matlab R2024a, adhering to the 155 

methodology illustrated in Figure 6. 156 

 

Figure 6. Flowchart depicting the approach employed for KSOM modelling. 

Model evaluation using statistical analysis 157 

The prediction capability of the FFNN and KSOM models for K computation was evaluated 158 

through statistical indicators, including determination coefficient (R2), root mean square error 159 

(RMSE), agreement index (AI) mean bias error (MBE), scatter index (SI), and mean absolute 160 

error (MAE) (Chandel et al. 2022a). Also, the regression line's significance was tested using 161 

the analysis of variance (ANOVA) method. The different statistical indicator equations are: 162 

 163 
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where, ai & fi represent the measured and predicted K values respectively, a̅ & f ̅indicates the 170 

average value of measured and predicted K respectively, and m is the entire dataset. The 171 

model exhibits a stronger agreement with the measured data when AI and R2 are closer to 1, 172 

and MAE, SI, RMSE, and MBE are minimized (Naeej et al. 2017).  173 

Results and Discussion 174 

This study uses the grain-size characteristics, which are straightforward to measure, alongside 175 

the experimental data to develop the FFNN and KSOM models. The study begins with an 176 

overview of the statistical analysis and dataset employed for developing and validating the 177 

models, followed by a section that focuses on K determination using the developed models 178 

and quantitatively evaluating their performance with statistical indicators. 179 

Statistical analysis 180 

The different grain-size characteristics namely d10, d30, d50, d60, & U were obtained by 181 

conducting the gradation test. The experimental investigations included the computation of 182 

sand, gravel, and silt content, in addition to n and K values. Table 1 outlines the statistical 183 

summary of the experimental findings, highlighting the mean, maximum, minimum, and 184 

standard deviation. The soil samples analyzed have porosity values ranging from 0.286 to 185 

0.426 and K values between 0.010 and 0.342 cm/s. 186 

 187 

 188 

 189 
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Table 1. Summary of key statistical parameters of soil sample characteristics. 190 

Characteristics Mean Maximum Minimum 
Standard  

deviation 

d10 (mm) 0.211 0.409 0.100 0.089 

d30 (mm) 0.393 0.821 0.193 0.154 

d50 (mm) 0.667 1.496 0.280 0.308 

d60 (mm) 0.936 2.101 0.372 0.474 

U* 4.493 9.567 2.150 1.497 

n* 0.362 0.426 0.286 0.029 

Gravel (%) 7.050 31.240 2.200 4.430 

Sand (%) 88.880 95.460 66.780 4.450 

Silt (%) 4.070 7.340 1.130 1.430 

K (cm/s) 0.069 0.342 0.010 0.061 

* denotes the unitless characteristics. 191 

A correlation matrix was utilized to examine the relationship between the dependent 192 

parameter (K) and independent parameters i.e., d10, d30, d50, d60, n, and U. Table 2 presents 193 

that the d10 & d50 reveal a stronger correlation (0.94 and 0.80) in contrast to the weaker 194 

correlations (0.40 and 0.34) observed for d30 & d60 with the K value respectively. Meanwhile, 195 

the porosity and uniformity coefficient reveal a moderate correlation (Table 2) with the K 196 

value. Considering the correlation analysis, the d10, d50, n, and U are identified as the input 197 

variables for the development of the model.  198 

Table 2. Correlation matrix for independent and dependent variables. 199 

  d10 d30 d50 d60 U n K 

d10 1.00       

d30 0.91 1.00      

d50 0.84 0.93 1.00     

d60 0.79 0.89 0.92 1.00    

U -0.06 0.10 0.29 0.42 1.00   

n 0.02 -0.25 -0.30 -0.46 -0.93 1.00  

K 0.94* 0.40 0.80* 0.34 -0.58* 0.60* 1.00 

           *denotes the correlation that is statistically significant (p<0.05). 200 

For the model development and validation phase, the dataset was obtained by performing 201 

experiments on 165 porous media samples. Further, the data set was divided into 70% (115 202 

soil samples) for model development and 30% (50 soil samples) for validation. A statistical 203 

overview of the input parameters i.e., d10, d50, U, & n, and output parameter (K) used in the 204 

development and validation phase is presented in Table 3. 205 

 206 

 207 
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Table 3. Summary of key statistical parameters of the data set used. 208 
 Model development Model validation 

Parameter Mean  Maximum Minimum 
Standard 

deviation 
Mean  Maximum Minimum 

Standard 

deviation 

d10 (mm) 0.203 0.409 0.100 0.090 0.228 0.395 0.115 0.084 

d50 (mm) 0.637 1.450 0.280 0.298 0.738 1.496 0.390 0.320 

U* 4.466 9.567 2.150 1.544 4.554 8.323 2.498 1.387 

n* 0.363 0.426 0.286 0.029 0.360 0.415 0.297 0.028 

K (cm/s) 0.067 0.342 0.010 0.065 0.072 0.221 0.011 0.052 

* denotes the unitless variable. 209 

Hydraulic conductivity modelling using FFNN  210 

The FFNN model was trained using the data points obtained from the 115 soil samples. A 211 

systematic trial-and-error evaluation of hidden-layer neuron configurations was undertaken to 212 

determine the FFNN model with the best performance. The most effective FFNN model, as 213 

identified by the analysis, features four inputs (d10, d50, U, & n), a hidden layer of five 214 

neurons, and an output variable, K. The FFNN model's accuracy in predicting K was 215 

analyzed through statistical measures and scatter plot visualization. Table 4 presents the 216 

statistical indicators corresponding to the best-performing FFNN model.  217 

Table 4. Statistical indicators for FFNN, and KSOM models 218 

Statistical 

Indicators 

FFNN model KSOM model 

Development Validation Development Validation 

R2 0.964 0.943 0.937 0.909 

RMSE 0.012 0.016 0.018 0.024 

SI 0.178 0.229 0.266 0.276 

MBE 0.000 0.006 -0.002 -0.004 

AI 0.980 0.977 0.975 0.902 

MAE 0.006 0.007 0.010 0.012 

Figure 7 depicts a scatter plot highlighting the comparison between FFNN-predicted and 219 

experimentally obtained K values during the development and validation stages. A strong 220 

correlation was observed between the FFNN-predicted and the measured K values, reflected 221 

by R² values of 0.96 and 0.94 in the development and validation phases, respectively. The 222 

validation results, as illustrated in Figure 7(b), indicate that the FFNN model performed well 223 

for K values below 0.10 cm/s and moderately for values above 0.10 cm/s. This suggests that 224 

the FFNN model had limited success in learning K values above 0.10 cm/s from the training 225 

data. The scatter in Figure 7 follows a consistent pattern along the 1-1 line, which was 226 

determined through linear regression between the measured K values and those predicted by 227 

the FFNN model. The regression line slope was not significantly different (p > 0.05) from the 228 

1-1 line, suggesting that the FFNN model introduced minimal bias in K value predictions.  229 
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(a) 

 

(b) 

Figure 7. Scatter plot indicating the comparison between FFNN model predicted and 

measured K values during (a) development and (b) validation stages. 

  230 

Hydraulic conductivity modelling using KSOM 231 

Experimental findings from 115 and 50 soil samples were employed to develop and validate 232 

the KSOM model. The initial training of the KSOM model utilized default parameter values, 233 

setting the learning rate (λ) to 0.5, and defining the neighbourhood radius as α = max(R1, 234 

R2)/4, where R1 and R2 are the dimensions of the map. The SOM toolbox defines the final 235 

map dimensions, adjusting the total neuron count to the product of R1 and R2. The output map 236 

from the KSOM model has a size of 12×8, consisting of 96 units. One of the key advantages 237 
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of KSOM is its potential to facilitate the visual examination of parameter correlations using 238 

component planes as presented in Figure 8.  239 

 

Figure 8. KSOM's component planes correspond to different parameters. 

Each parameter is visualized on a component plane (Figure 8) made up of 96 hexagonal units, 240 

with values indicated through nearby colour coding. On the component plane, values are 241 

colour-coded as yellow for high, light blue for medium, and dark blue for low. Consequently, 242 

the component planes enhance visual clarity, allowing easier identification of regions with 243 

varying parameter levels. From Figure 8, it is evident that the colour gradient pattern of the 244 

d10 and d50 component planes run parallel to that of the K component plane, reflecting a 245 

correlation where low and high values of d10 and d50 correspond to low and high values of K, 246 

respectively. An inverse correlation between the U and n parameters is observed in their 247 

component planes, most prominently in the top-left and bottom-right regions, whereas, the 248 

central region of these parameters exhibits a consistent similarity in the colour gradient. 249 

Analysis of the component planes for U, n, and K indicates that the low K values on the top-250 

left side are linked to low n and high U values. Conversely, higher K values on the top-right 251 

side correlate with medium n and U values. Also, examining the component planes in parts 252 

depicts distinct relationships between the parameters, yet a comprehensive assessment 253 

remains elusive. 254 

The KSOM model efficacy to predict K was examined using statistical indicators (Table 4)  255 

and scatter plots (Figure 9) for both the development and validation stages.  256 
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(a) 

 

(b) 

Figure 9. Scatter plot indicating the comparison between KSOM model predicted and 

measured K values during (a) development and (b) validation stages. 

The KSOM model achieved an R2 value of 0.91 during the validation stage, reflecting 257 

moderate prediction efficacy as shown in Figure 9(b). Also, the KSOM model demonstrated 258 

superior predictive accuracy (Figure 9b) for K values below 0.06 cm/s during validation, 259 

while its performance for values exceeding 0.06 cm/s was comparatively moderate. With a 260 

slope not statistically different from the 1:1 line (p>0.05) during both stages, the KSOM 261 

model exhibited low bias in predicting K. The low negative MBE values presented in Table 4 262 

provide further confirmation of this finding. 263 
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Furthermore, a statistical comparison of the FFNN and KSOM models was carried out to 264 

ascertain which model provides a better estimate of the porous media's K. The statistical 265 

indicators presented in Table 4 indicate that the FFNN model outperforms the KSOM model 266 

in estimating the K values. The FFNN model achieved R² and AI values of 0.94 and 0.97 267 

during validation, outperforming the KSOM model, which attained R² and AI values of 0.91 268 

and 0.90, respectively. Additionally, the FFNN model's lower MBE, MAE, SI, and RMSE 269 

values (0.006, 0.007, 0.229, and 0.016, respectively) during validation underscore its efficacy 270 

in predicting the K of soil samples compared to the KSOM model.  271 

Conclusions 272 

The study evaluates the predictive potential of FFNN and KSOM models for determining the 273 

hydraulic conductivity of porous media. Correlation analysis suggests that K is 274 

predominantly influenced by porosity, uniformity coefficient, and grain-size namely d10 & 275 

d50. The performance of both models i.e., FFNN and KOSM was examined using scatter plots 276 

and statistical indicators. The FFNN model outperforms the KSOM model in estimating K of 277 

soil samples during the development and validation stages, highlighting its effectiveness as 278 

the best-performing model. The KSOM model demonstrates satisfactory results for 279 

estimating K during development; however, its validation performance is comparatively 280 

moderate. The FFNN model achieved higher R² and AI values of 0.94 and 0.97, respectively, 281 

compared to the KSOM model during validation, emphasizing the prediction efficacy of the 282 

FFNN model in computing the K value. The study highlights the potential of these techniques 283 

and encourages their application in future research on K estimation for diverse soil samples. 284 
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