
ARTICLE

Observationally constrained projection of
Afro-Asian monsoon precipitation
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The Afro-Asian summer monsoon (AfroASM) sustains billions of people living in many

developing countries covering West Africa and Asia, vulnerable to climate change. Future

increase in AfroASM precipitation has been projected by current state-of-the-art climate

models, but large inter-model spread exists. Here we show that the projection spread is

related to present-day interhemispheric thermal contrast (ITC). Based on 30 models from the

Coupled Model Intercomparison Project Phase 6, we find models with a larger ITC trend

during 1981–2014 tend to project a greater precipitation increase. Since most models over-

estimate present-day ITC trends, emergent constraint indicates precipitation increase in

constrained projection is reduced to 70% of the raw projection, with the largest reduction in

West Africa (49%). The land area experiencing significant increases of precipitation (runoff)

is 57% (66%) of the raw projection. Smaller increases of precipitation will likely reduce

flooding risk, while posing a challenge to future water resources management.
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The Afro-Asian monsoon, a major component of the global
monsoon system, consists of West African, South Asian
and East Asian monsoon regions1–5. Projection of Afro-

Asian summer monsoon (AfroASM) precipitation, which would
greatly affect local freshwater resources for billions of people3,6,7,
thus is crucial to climate change adaptation and mitigation
activities. Unfortunately, the projections of climate models show a
large spread8–12, hampering the assessment of regional climate
change. To yield a more reliable future projection, understanding
and reducing the uncertainty are of urgent need.

Great efforts have been devoted to the understanding of the
source of uncertainties in monsoon precipitation changes. Multi-
model ensemble (MME) projections of CMIP (Coupled Model
Intercomparison Project) models suggest that AfroASM pre-
cipitation would increase by approximately 8% and 14% under
medium and high emission scenarios in the long-term projection,
with large inter-model spread of 1%~14% and 3%~25%,
respectively4,11,13–16. The thermodynamic process related to
increases in atmospheric moisture enhances precipitation
robustly across models, while the dynamic process associated
with changes of circulation contributes to large inter-model
uncertainty7,11. Total uncertainty in future projection comes from
distinct socioeconomic scenarios, stochastic internal variability
and different model structures8,17–21. The model uncertainty
explains more than 70% of total uncertainties of AfroASM pre-
cipitation changes in CMIP5 models in the long-term
projection8,22. The uncertainty can even offset the reliability of
monsoon precipitation projection, and hamper the use of this
information for policy making8,23.

In recent years, the emergent constraint technique, which is
based on the physical link between a modeled but observable
variable in the present day and a projected variable in the future
climate system, has been developed to reduce the projection
uncertainty and improve the reliability of future projection24–28.
So far, many factors, such as the SST over cold-tongue regions
and the convection over western Pacific, have been used to
constrain the CMIP5 projection of summer precipitation over the
East Asian, South Asian and West African monsoon
regions9,10,29–31.

In the ongoing CMIP6, while global land monsoon precipita-
tion is projected to increase in the long term under high emission
scenarios, there exists large uncertainty at regional scales, in
particular over the AfroASM regions11. Recent studies reported
the connection between the uncertainty of AfroASM precipitation
changes and the increase of interhemispheric thermal contrast in
the projection4,12,13,32. But how to constrain the projection and
reduce the spread remains unknown. Given the fact that the
monsoon precipitation in West Africa and Asia shows in-phase
changes due to the modulation of interhemispheric thermal
contrast (ITC) and sea surface temperature (SST) variation of
North Atlantic on millennial1,33, centurial4,12,32, and decadal
timescales3,34, we hypothesize that the spread of AfroASM pre-
cipitation can potentially be constrained by the large scale
interhemispheric or land-sea thermal contrast. We examine this
hypothesis by using the output of the new Scenario Model
Intercomparison Project in CMIP635.

In this work, by constraining the spread and biases of ITC in a
hierarchical statistical framework, precipitation increase in the
constrained projection (0.57 ± 0.38 mm day−1, constrained pro-
jection with ±1σ across models) is about 70% of the raw pro-
jection, with the largest reduction in the West African monsoon
region. About 10% of the inter-model uncertainty in future pre-
cipitation changes is reduced. Given that the emergent constraint
improves the reliability in AfroASM precipitation projections, we
further investigate the impacts of the constrained projection on
the potential water availability. The fractions of land area that will

experience a significant increase of precipitation and potential
water availability are about 57% and 66% of the raw projection,
respectively.

Results
Dominant uncertainty of AfroASM precipitation projection.
CMIP6 models project a general increase in AfroASM pre-
cipitation under the high-emission scenario, Shared Socio-
economic Pathways (SSP) 5–8.5 (2050~2099), except for part of
the West African monsoon region (Fig. 1; see Methods and
Supplementary Table S1). The SSP5-8.5 scenario is a fossil-fuel
development pathway, in which the anthropogenic radiative
forcing will increase by 8.5Wm−2 at the end of 21st century36–38.
The regional average of the AfroASM precipitation increase is
14% relative to the baseline (1965~2014), with a large inter-model
spread (1%~27% for the 5th–95th ensemble range; Fig. 1a). The
signal-to-noise ratio (SNR), defined as the ratio between the
ensemble mean and inter-model standard deviation (STD) of the
projected changes, is less than 1.5 over 90% of the Afro-Asian
monsoon regions, demonstrating large inter-model uncertainties
in the projected AfroASM precipitation (Fig. 1c).

To reveal the sources of model spread, we conduct an inter-
model empirical orthogonal function (EOF) analysis on the
projected changes of AfroASM precipitation (Fig. 2; see
Methods). The leading principal component (PC1) accounts for
26% of inter-model variance (Fig. 2a and Supplementary Fig. S1).
The leading uncertainty mode exhibits a spatially consistent
increase of precipitation over the AfroASM domain, with a
systematic enhancement of monsoon circulation from West
Africa, through Indian Peninsular to East Asia (Fig. 2a and
Supplementary Fig. S2). To exclude that the above pattern may be
dominated by strong diversity in mean precipitation and spatial
variability across model, we further scale each model prior to
taking the inter-model EOF analysis (see Methods), and obtain
similar patterns compared with that in Fig. 2a (not shown).
Hence, the synchronized precipitation changes across the entire
AfroASM regions in the model spread imply that a large-scale
controlling factor may play a dominant role.

Physical linkage between present-day bias and future projec-
tion uncertainty. The large-scale monsoon circulation is appar-
ently driven by the thermal contrast between Northern
Hemisphere (NH) and Southern Hemisphere (SH) due to moist
static energy gradients associated with the seasonal swing of solar
incidence39–42. Given the driving mechanism of monsoon, to
understand the leading mode of projection uncertainty, we focus
on the warming contrast between NH and SH that drives large-
scale monsoon circulation. We regress surface temperature
warming in 2050–2099 across models onto the normalized PC1
(Fig. 2b). A robust “NH warmer than SH” pattern is obtained,
suggesting that models with larger increases of NH-SH ITC tend
to project a wetter AfroASM, which is consistent with the basic
driving mechanism of monsoon. In addition, the inter-model
spread of NH-SH ITC in future projections correlates with the
trend over the historical period (Fig. 2c). This pattern indicates
that a model with a larger ITC trend in the present-day climate
will project a greater increase of AfroASM precipitation in the
future, as shown in the corresponding EOF1 (Fig. 2a). In addi-
tion, a remarkable warming anomaly related to PC1 in the his-
torical period is seen over the Southern Ocean, which may be
associated with the model biases in sea ice coverage43.

Why does the significant inter-model correlation between the
present-day ITC trend and future AfroASM precipitation exist? A
greater NH warming than SH is inherent to global warming given
a smaller heat capacity due to a larger land area fraction in the
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NH and the Arctic amplification44–46. Hence, the inter-model
scatter of NH-SH ITC is associated with that of global mean
warming rate under a specific radiative forcing, i.e., the
equilibrium climate sensitivity (ECS) which measures warming
magnitude under doubled CO2 concentration relative to the pre-
industrial period (Fig. 3a; see Methods). Models with a larger ECS
show a larger NH-SH ITC in both the historical and future
periods (Fig. 3b). A larger increase of ITC would lead to a
stronger PC1 and thereby project more precipitation over
AfroASM regions (Fig. 3c and Supplementary Fig. S1). The
underlying physical mechanism is that a model with larger
increase of ITC induces a stronger enhancement of low-level

cross-equatorial flow over North Atlantic Ocean, Somalia and
South China Sea (Supplementary Figs. S3a and S3b). The pattern
of low-level cross-equatorial flow regressed onto the PC1 across
models closely resembles that regressed onto the projected ITC
(Supplementary Figs. S3c and S3d). Hence a larger projected
increase of ITC would induce a stronger low-level cross-
equatorial flow and thereby more moisture transport, finally
resulting in more increase of AfroASM precipitation.

The underlying mechanism provides a solid physical basis to
the observational constraint. Thus, we can constrain the future
inter-model uncertainty of AfroASM precipitation based on the
present-day observed ITC trend.

Fig. 1 Projected changes in the Afro-Asian summer (June, July, August, and September) monsoon (AfroASM) precipitation and uncertainty of the
projected changes. a Time series of 5-year running mean of AfroASM precipitation anomalies (units: mm day−1), relative to 1950~1980 mean. Historical
(gray) and SSP5-8.5 (red) simulations are shown for the 5th and 95th percentiles across 30 models (shading), and the ensemble mean (thick solid lines).
The blue solid line is the AfroASM precipitation anomalies after emergent constraint. The black solid and dash lines are the observational series from the
Climatic Research Unit (CRU) Time-Series (TS) version 4.02 and Global Precipitation Climatology Centre version 7 (GPCC v7), respectively. b Changes in
precipitation (units: mm day−1) under SSP5-8.5 scenario (2050–2099) relative to historical simulation (1965–2014). The region surrounded by the contour
is the Afro-Asian monsoon region (see Methods). c The inter-model standard deviation (σ) of projected precipitation changes. Hatched regions denote
signal-to-noise ratio between the absolute value of projected changes and the standard deviation less than 1.5. The regions where precipitation changes are
lower than 0.1 mm day−1 or over ocean is omitted.
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Fig. 2 Dominant pattern of projected uncertainty and related historical pattern. a The projected precipitation (shading, mm day−1) and wind at 850 hPa
(UV850; vector, m s−1) across 30 CMIP6 models under high-emission scenario (SSP5-8.5) regresses onto the inter-model normalized leading principal
components (PC1). The PC1 are derived from the inter-model empirical orthogonal function (EOF) analysis of projected precipitation change under SSP5-
8.5 in 2050–2099 relative to 1965–2014 (see Methods). The percentage on the top-right corner is explained inter-model variance. b the future increase of
surface temperature in 2050~2099 and c the trend of surface temperature (K) in 1965–2014 across models regresses onto the inter-model normalized
PC1. Panels d and e are the zonal mean of the regression coefficient, and the thin dash vertical lines are the global area mean of the regression coefficient.
The stippling, black vectors and hatching represent the regression exceeds 90% confidence level under Student’s t test. Black dash boxes in c are used to
define the pattern indices to constrain the PC1 (see Methods).
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Constrained projection of AfroASM precipitation. The rela-
tionship between present-day warming patterns and projected
spread across models allows the emergent constraint on the
AfroASM precipitation, using multiple observation datasets. To
measure the model’s fidelity in simulating the present-day
observed climate, we define an ITC pattern index (ITCI). For
each model, the ITCI is produced by projecting the present-day
trend pattern of surface temperature onto the warming pattern
associated with the inter-model PC1 shown in Fig. 2c. Using the
above projecting pattern, the ITCI is defined as the difference
between NH and SH (see Methods). The ITCI can well explain
the leading mode of model uncertainty in projected AfroASM

precipitation, as evinced by the significant correlation coefficient
with the area mean of AfroASM precipitation (r= 0.58, p < 0.01;
Fig. 4a) and the PC1 (r= 0.61, p < 0.01; Fig. 4b), respectively.

Based on the relationship between present-day climate (X) and
projected PC1 (Y), we constrain the PC1 using a linear fit:
Y ¼ �Y þ ρðX � �XÞ, where ρ is the corrected regression coeffi-
cient, and �X and �Y represent the present-day and projected
multi-model ensemble (MME), respectively (see Methods). To
constrain the PC1, we firstly calculate the mean ITCI based on
four observational datasets (vertical red dashed line in Fig. 4).
The values of ITCI simulated by ~70% models are larger than the
observations, indicating a systematic overestimation of the

(a)

(b)

(c)

Fig. 3 Inter-model physical relationship between the present-day and projected spread. a–c inter-model relationship among the equilibrium climate
sensitivity (ECS), present-day trend of interhemispheric thermal contrast (ITC), projected changes of ITC and PC1. The definition of the indices above is in
Methods. Solid fitting line is obtained by the least square method. The results on the top-right corner are the correlation coefficient and significant level
under Student’s t test.
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present-day ITC by CMIP6 models. The models with a larger
ECS, such as CanESM5 and CanESM5-CanOE, simulate a
stronger ITCI (Fig. 3a and Supplementary Table S3). The
constrained AfroASM area-mean precipitation is 10 ± 6%
(0.57 ± 0.38 mm day−1, constrained projection with ±1σ across
models after emergent constraint). The constrained value of PC1
is −0.60 ± 0.80.

Since the regional precipitation changes are informative and
crucial for climate change adaptation activities, we further
constrain the spatial patterns in the projection. Based on the
observational constraint of PC1 value and PC1-related patterns,
we attain the corrected projections of precipitation and circula-
tion patterns (Fig. 5; see Methods). The constrained projection
indicates an increase of AfroASM precipitation by 10% in
2050–099 relative to 1965–2014 (Fig. 5a), which is ~70% of that
of the raw (viz, unconstrained) projection. Correspondingly, the
constrained monsoon circulation change is weaker than the raw
multi-model ensemble (Supplementary Fig. S4). Locally, the
constrained increases over West African, East Asian, and South

Asian monsoon regions are 7%, 8%, and 12% respectively
(Fig. 5a). The strongest reduction is seen over the West African
monsoon region, where the constrained projection is only 49% of
the raw MME projection, while over the East Asian monsoon
region the constrained projection is 70% of the raw MME
(Fig. 5b). The model uncertainty is also reduced after emergent
constraint. Probability density function (PDF) of constrained PC1
is narrower than the original one, with a reduction of variance by
37% (Fig. 5c). Considering the explained variances of PC1 (26%),
the total variance is reduced by ~10% (37% × 26%).

Impacts on the potential water availability. The AfroASM
region holds a high density of population. More monsoon pre-
cipitation is expected to increase the potential water availability,
which is mirrored in the runoff47,48, while the associated intense
monsoon precipitation will also lead to flood and landslide49–52.
The projected increase in monsoon precipitation under global
warming is expected to partly offset the drying tendency since the

(a)

(b)

Fig. 4 Relationship between spreads in projection of Afro-Asian summer monsoon (AfroASM) precipitation and historical warming pattern. The
scatter diagram between interhemispheric thermal contrast pattern index (ITCI, (K 34 yr−1)2) across models in the present-day climate and inter-model
spread of AfroASM precipitation (a) and normalized PC1 (b). ITCI can explain the PC1 with high corrected correlation coefficient (r) which is shown on the
top right corner. Black fitting line is obtained by the least square method, and the red fitting line is an observational correction based on Eq. (5) (Eq. (5); see
Methods). Dashed curves denote the 95% confidence range of the linear regression. The red (black) vertical and horizontal dash lines denote the mean of
ITCI across multiple observation datasets (models) and the constrained (raw) projection, respectively. The dark gray shading denotes the range of ±1σ
across observation datasets. The light gray shading denotes the range contributed from the unforced internal variability (see Methods).
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1950s (Fig. 1a). The smaller increase of precipitation in the
constrained projection will reduce the increased potential water
availability as expected from the raw projection, meanwhile the
possible disasters related to heavy rainfall and floods will reduce
accordingly. Here, we further estimate the impact of emergent
constraint on the change in areal extent of precipitation and
potential water availability.

To quantify the impact on the areal extent of precipitation, we
examine the land area fraction that experiences a significant
increase of precipitation (Fig. 6; see Methods). The fraction with a

significant increase of precipitation is 24% in the constrained
projection, only 57% of the raw projection. Regionally, in the
constrained projection, the land area fraction in the East Asian
monsoon region is only 37% of the raw projection, while in the
West African and South Asian monsoon regions, the correspond-
ing results are 50% and 69%, respectively.

Based on the significantly positive correlation between
precipitation and runoff (Supplementary Fig. S5), we further
quantify the changes of potential water availability in the
constrained projection (Fig. 6; see Methods). About 27% land

Fig. 5 The constrained projection and narrowed uncertainty of Afro-Asian summer monsoon precipitation. a The constrained precipitation (shading,
mm day−1) and wind at 850 hPa (UV850; vector, m s−1; vectors drawn for larger than 0.1 m s−1) based on the reconstruction of observed PC1, and (b) the
constrained effect represented by the difference between constrained and unconstrained multi-model ensemble (MME). The constrained effect of
precipitation in b is represented by the percentage (%) relative to the absolute values of unconstrained MME. Before calculating the fraction of constrained
effect in b, the unconstrained MME are set as 0.05mm day−1 over the regions where the absolute values of unconstrained MME are lower than 0.05mm
day−1. c Probability distribution function (PDF) of unconstrained (black) and constrained (blue) PC1. The values on the right corner are the narrowed
variance due to emergent constraint. The values in the parenthesis are the mean and the standard deviation.
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area in the AfroASM region will witness a significant increase of
potential water availability in the constrained projection, which is
only 66% of that of the raw projection. Regionally, the
constrained land area fraction in the West African monsoon
region is only 55% of the raw projection, while in the South Asia
and East Asian monsoon regions, the corresponding result is 71%
and 76%, respectively. Hence, less land area in AfroASM will
experience a significant increase of precipitation and runoff in the
constrained projection. These imply that the characteristics of
precipitation change in the future will be milder than the raw
projection.

Discussion
Our emergent constraint on the projection of monsoon pre-
cipitation in the AfroASM regions is based on SSP5-8.5 scenario.
We extend our analysis to the medium emission scenario of
SSP2-4.5 and get similar conclusion (Supplementary Figs. S6
and S7). In addition, to examine the robustness of the emergent
constraint, we check the inter-model correlation coefficient
between ITCI and PC1 by using different subsets of model and
including randomized outliers, and come to similar conclusion
(Supplementary Fig. S8). The independence of the results on the
model ensemble and the future emission scenarios confirms the
robustness of the conclusions.

Our results reveal that the raw projection overestimates the
increase of precipitation in the AfroASM region. While the
constrained projection of the increase in AfroASM precipitation
is 70% of the raw projection in the context of regional average, the
effects of emergent constraint on the changes of precipitation and

water availability are more pronounced at regional scales. The
projection of precipitation constrained by the observation is 49%
(70%) of the raw projection in the West Africa (East Asia)
monsoon region, even reduced by 70% (50%) more widely over
sub-regional or local scales. The land fraction that will experience
a significant increase of precipitation is 50% (37%) of that of the
raw projection in West Africa (East Asia) monsoon region. The
change of precipitation is echoed in the runoff as an indicator of
potential water availability and the risk of flood. The smaller
increase of potential water availability than the raw projection
may pose a challenge to climate change adaptation and mitigation
activities related to water management and food security53,54,
although a smaller than expected increase in rainfall will also
reduce the risk of extreme precipitation and flooding.

Given that the inter-model uncertainty of global mean warm-
ing is closely associated with the inter-model spread of ECS55,56,
with normalizing by the global mean warming, the precipitation
response (viz, hydrological sensitivity) still shows a remarkable
spread across models10,12,57. A recent study reported that
the projected uncertainty of hydrological sensitivity over the
AfroASM regions is related to the projected uncertainty of ITC
and land-sea thermal contrast12. Since the inter-model uncer-
tainties of both hydrological sensitivity and global mean surface
air temperature (GSAT) are significantly correlated with the ITC
(Supplementary Fig. S9), we further constrain the hydrological
sensitivity and GSAT separately based on the intermodel rela-
tionship between projected uncertainty and present-day biases
(see Methods). The results based on constraining hydrological
sensitivity and GSAT separately are consistent with that based on
constraining the precipitation changes directly. The constraining

Fig. 6 Spatial distribution of unconstrained and constrained changes in precipitation and runoff. The probability distribution functions (PDFs) are
aggregated by the land area fraction that experienced a certain change of precipitation (a1–d1) and runoff (a2–d2). The shadings and percentages in the
subplots are the land area fraction which will experience a significant increase in the unconstrained (blue) and constrained (red) projections. The significant
increase is defined as the increase exceeds the range of inter-model standard deviation (see Methods). The constrained projection of runoff is based on the
relationship between runoff changes and precipitation changes (see Methods).
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effects from hydrological sensitivity and GSAT reduce the raw
precipitation projection by 13% and 21%, respectively. Thus, the
GSAT warming plays a dominant role in the emergent constraint
on precipitation changes, while the contribution from hydro-
logical sensitivity should not be neglected.

Methods
Observations. To correct the present-day model biases and constrain the future
projections, multiple observational datasets are used. The monthly gridded
observational surface temperature datasets used are (1) Berkeley Earth Surface
Temperature (BEST)58, (2) Cowtan and Way version 259, (3) NASA Goddard
Institute for Space Studies Surface Temperature version 5 (GISTEMP v5)60, and (4)
NOAA Global Surface Temperature version 5.0 (NOAAGlobalTemp v5)61,62. The
observational surface temperature datasets have been regridded on 2.5° × 2.5°.

Precipitation datasets are taken from (1) Climatic Research Unit (CRU) Time-
Series version 4.0263, (2) Global Precipitation Climatology Centre version 7 (GPCC
v7)64, (3) Climate Prediction Center (CPC) Merged Analysis of Precipitation
(CMAP v1201)65, and (4) the Global Precipitation Climatology Project (GPCP
v2.3)66. Details of the datasets are provided in Supplementary Table 2.

Model simulations. We use the monthly output from 30 CMIP6 models (Sup-
plementary Table S1) in historical simulation, and future projection under SSP5-
8.5 scenario35,37. Given the recent trends in decarbonization, SSP5-8.5 is a highly
unlikely scenario38. Hence, the monthly data from 18 CMIP6 models in future
projection under median emission scenario, SSP2-4.5, are also used to verify the
independence of emission scenarios. The first available realization for each model is
used to give equal weight to each model. To examine the contribution from internal
variability, we use the output of 29 CMIP6 models from the piControl simulations,
in which all external forcings are held constant at their 1850 levels (Supplementary
Table S1). All the data is re-gridded to 2.5° × 2.5° grids using first-order con-
servative interpolation, except for the circulation patterns which is re-gridded using
bilinear interpolation.

To represent future projection of the summer monsoon rainfall, we focus on the
changes in seasonal mean precipitation from June to September (JJAS) in
2050–2099 relative to the mean in 1965–2014.

Afro-Asian monsoon. The Afro-Asian monsoon region is defined as the land
monsoon area over Eurasian continent and North Africa3,67 (Fig. 1). The land
monsoon domain is defined as the land area where the precipitation difference
between the local summer and winter is larger than 2.0 mm day−1, and local
summer precipitation exceeds 55% of the annual total precipitation67, based on the
climatological mean of CMAP65 and GPCP66. Local summer is defined as May to
September for the Northern Hemisphere (NH). The Afro-Asian monsoon consists
of 3 regional monsoons, including East Asia, South Asia, and North Africa mon-
soon (Fig. 1b, c contour).

A strong monsoon circulation is marked by a strengthening of the vertical zonal
wind shear68,69. To quantify the response of AfroASM circulation, we define a
circulation index as the vertical shear of zonal winds between 850 and 200 hPa
averaged in a zone stretching from North Atlantic eastward to the Philippines
(0–20°N, 30°W–120°E).

Inter-model empirical orthogonal function (EOF) analysis. The leading modes
of inter-model uncertainty in the summer precipitation projection over Afro-Asian
monsoon region is obtained by applying the typical EOF method to model-spatial
dimension:

4Pr0 m; nð Þ ffi ∑
num

i¼1
PCi;m ´EOFi;n

� �
; ð1Þ

in which Δ denotes projected changes, m denotes model number, n denotes the
spatial area, and num is the mode number. Prime represents the deviation from the
multi-model ensemble (MME). PCs are normalized here. The inter-model EOF
method has been successfully used for the East Asia monsoon29,31, tropical ocean
SST70–72, and extra-tropical oceans SST73.

The leading principal component (PC1) of AfroASM precipitation accounts for
26% of the total intermodal variance (Fig. 2).

Scaling individual models. To confirm the results are not dependent on the
strength of individual models’ hydrological cycles, the mean precipitation changes
over tropics and global for each model have been removed from the original
precipitation changes, respectively, and then the precipitation changes have been
normalized by the corresponding spatial standard deviation. We take the inter-
model EOF analysis for the scaled precipitation changes. The results show that the
patterns of projected changes of precipitation and low-level circulation regressed
onto the scaled PC1 across models closely resemble that in Fig. 2a. Thus, we only
present the results without scaling in the paper.

The definition of interhemispheric thermal contrast (ITC) and ITC pattern
index. The future increase of AfroASM precipitation is closely associated with the
projected NH-SH thermal contrast, with correlation coefficient higher than 0.7
across models12,13,32. To constrain the future projection using the present-day
observation, we select two key regions which represent the NH-SH thermal con-
trast to define ITC and ITC pattern index (ITCI).

The ITC is defined as the difference of the area-averaged surface temperature
between (20°N~50°N, 0~360°) and (20°S~50°S, 0~360°). To represent the pattern
of ITC, a pattern index is produced by projecting surface temperature trend onto
the pattern associated with PC1 (TPC1) shown in Fig. 2c.

The period 1981–2014 is chosen to calculate the pattern indices and constrain
the projection. The warming trend of ITC in 1981–2014 has been dominated by the
response to greenhouse gases, with no significant trend in aerosol cooling74–78.

For the ITCI of each model, to clearly reflect the present-day warming pattern,
the historical warming trend of surface temperature in each model (THist) is
projected onto the inter-model warming trend shown in Fig. 2c (TPC1) in Northern
Hemisphere (NH; 20°N~50°N, 0~360°) and Southern Hemisphere (SH; 20°S~50°S,
0~360°), respectively, following Chen31:

ITCI ¼ THist � TPC1

� �
NH � THist � TPC1

� �
SH ; ð2Þ

where 〈〉 denotes area mean.
To calculate the index in observation, THist is derived from the four

observational surface temperature datasets (Supplementary Table S2).

Equilibrium climate sensitivity. To investigate the source of model biases of the
present-day ITC trend, we use the model’s equilibrium climate sensitivity (ECS).
The ECS is represented by the effective climate sensitivity which is estimated by
regressing the net top-of-atmosphere radiance against the global mean surface air
temperature changes in the first 150 years of the CO2 quadruples
experiment75,78–80. The ECS of most models in this study is derived from the
Table 2 in Meehl80, except for that of CanESM5-CanOE which is derived from
Swart81, and FGOALS-g3 which is derived from Zhou82 and Li83.

The contribution from the unforced internal variability. To quantify the impact
from the unforced internal variability to the ITCI, we calculate the ITCI based on
the piControl simulations of 29 CMIP6 models. We calculate the trend of ran-
domly selected continuous 34-year period and repeat this process over 1000 times
to obtain 1000 synthetic members from each model. The contribution of the
internal variability is measure by the variance across different synthetic members
ðσ2internalÞ, which is approximately 7.8 × 10−4 K2 34 yr−2, compared to 3.9 × 10−3 K2

34 yr−2 of present-day ITCI across 30 models (σ2intermodel). The contribution from
the internal variability accounts for 20% based on the variance ratio
(σ2internal=σ

2
intermodel). The range of unforced internal variability in Fig. 4 (light gray

shading) is represented by ±1σ across different synthetic members (σ2internal).

Hierarchical statistical framework for emergent constraint. To constrain the
projected AfroASM precipitation, we use the hierarchical emergent constraint
(HEC) framework proposed by Bowman24. The HEC framework accounts for both
the correlation between future and present-day climate, and the precision in the
observational datasets, compared with the classical emergent constraint24,31.

In the HEC framework, we establish a link between future climate change (Y)
and present-day climate (X) to constrain Y. The emergent constraint is based on
the linear regression between Y and X obtained from climate models:

Y ¼ �Y þ ρi X � �X
� �

; ð3Þ
where ρi is the regression coefficient. �X and �Y are the multi-model ensemble mean
of X and Y, respectively. Y is AfroASM precipitation changes or PC1, and X is ITCI

in Eq. (2).
Since we use the observation in current climate (XO) to constrain Y, the

uncertainty in the observations should be considered. Under the Gaussian
assumptions which relates the observations to current climate24, the signal-noise
ratio (SNR) in the observation is the ratio between the variance across models (σ2X)
and observational datasets (σ2O):

SNR ¼ σ2X=σ
2
O; ð4Þ

The regression coefficient is multiplied by 1
1þSNR�1 to correct ρi31. If the SNR is

much larger than 1 (SNR » 1), the effect of correction can be neglected. In our
analysis, SNR of ITCI is 110.

Based on the Eqs. (3) and (4), the constrained results and variance of future
climate change �YC can be expressed as:

�YC ¼ �Y þ ρ �XO � �X
� �

; ð5Þ

σ2YC
¼ 1� r2

� �
σ2Y ; ð6Þ

Where ρ is the corrected regression coefficient, i.e., ρi
1þSNR�1; r is the corrected

correlation coefficient between X and Y, i.e., r2i
1þSNR�1 , and the ri is the original

correlation coefficient between X and Y.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30106-z ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2552 | https://doi.org/10.1038/s41467-022-30106-z | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Based on the Eq. (6), the relative variance reduction (1� σ2YC
σ2Y
) from the HEC

framework is r2i
1þSNR�1. The total reduced variance (TRV) after constraining the PC1

can be expressed as the weighting on the corresponding explained variances of PC1
(PCV1):

TRV ¼
r2PC1;ITCI

1þ SNR�1
ITCI

PCV1; ð7Þ

To constrain the projection results of individual model, we correct the PC1 of
individual model using the �XO . Base on the relationship of emergent constraint, the
constrained PC1 of each model ( �Ym;C) can be expressed as:

Ym;C ¼ Ym þ ρ �XO � Xm

� �
; ð8Þ

where Xm and Ym is the ITCI and the PC1 of each model, respectively. The inter-
model standard deviation of the constrained PC1 is 0.80.

Corrected multi-model mean projection. The corrected PC1 are estimated by the
emergent constraint using the observed ITCI. Since the pattern scaling has been
shown to work robustly for seasonal averages of precipitation22, the projection of
the AfroASM precipitation can be corrected based on EOF reconstruction, fol-
lowing Eq. (1):

4Pr ¼ 4Prþ4Pr0 � 4Prþ PC1O ´Pr0PC1; ð9Þ
where subscript “O” denotes the corrected PC1 constrained by observation, 4Pr
represents the multi-model ensemble mean of precipitation, and Pr0PC1 represents
the PC1-related pattern of precipitation changes shown in Fig. 2a. The wind fields
at 850 hPa can be corrected in a similar way of Eq. (9), but the Pr0PC1 term need to
be replaced by the regression coefficients related to PC1.

Spatial aggregated probability density function. To measure the area with a
certain change, we calculate the spatial aggregated probability density function
(PDF) in the projected changes of precipitation. According to the latitude-
dependent area, the grid points falling in each bin of the PDF have been weighted.
Hence, the spatial distribution is an aggregated of all grid area satisfying the
conditional sampling. The PDF is derived from the nonparametric assessment of
the PDF. The spatial PDF is proposed by Fischer84 and successfully used for the
detection of extreme climate events85–88.

Land fraction that experiences a significant increase of precipitation. The
significant increase in the spatial aggregated PDF over AfroASM and three sub-
monsoon regions is defined as the increase exceeds the inter-model standard
deviation over AfroASM and three submonsoon regions, respectively. The area that
experiences significant increases is aggregated spatially to represent the area which
witness a significant increase of precipitation. Fraction is calculated with respect to
the total area.

Impact of precipitation change on runoff projection. For each model, we cal-
culate the projected changes in summer mean runoff for the period of 2050–2099
relative to the baseline. For the entire AfroASM and each submonsoon regions,
there is a strong linear correlation between runoff changes and precipitation
changes across models (Supplementary Fig. S5). This relationship enables a con-
straint on future runoff changes by using observationally constrained precipitation
changes. Hence, following previous studies48, the constrained changes of runoff
(4Rconstrained) are derived as following equation:

4Rconstrained ¼ k � 4Prconstrained þ b; ð10Þ
where ΔPrconstrained denotes the constrained change of precipitation based on Eq.
(10), and k denotes the regression coefficient between changes of runoff and
precipitation, and b denotes intercept.

Constrained projection of hydrological sensitivity and GSAT. The hydrological
sensitivity is defined as the precipitation response normalized by the GSAT
warming in 2050–2099 relative to 1965–2014. Since the inter-model spread of
hydrological sensitivity is closely related to that of ITC (Supplementary Fig. S9a),
which is consistent with recent study12, we constrain the projection of hydrological
sensitivity over AfroASM region based on Eq. (5) and Eq. (8). The constrained
response of hydrological sensitivity is only 87% of that of the raw projection.

We constrained the projected GSAT warming using the observed GSAT trend
in 1981–2014, following Tokarska75 and Lee45. The constrained GSAT warming is
2.62 ± 0.57 K, weaker than the raw projection (3.30 ± 0.78 K) under SSP5-8.5.

Data availability
The data that support the findings of this study are freely available. CMIP6 model data are
from the Earth System Grid Federation [https://esgf-node.llnl.gov/search/cmip6/].
Observational temperature BEST is from the Berkeley Earth [http://berkeleyearth.org/

data-new/], Cowtan and Way v2 is from the University of York and the University of
Ottawa [https://www-users.york.ac.uk/~kdc3/papers/coverage2013/series.html],
GISTEMP is from the NASA GISS [https://data.giss.nasa.gov/gistemp/]. Observational
precipitation CRU is from the University of East Anglia [http://badc.nerc.ac.uk/data/cru/].
NOAAGlobalTemp v5, GPCC v7, CMAP v1201 and GPCP v2.2 are provided by the
NOAA/OAR/ESRL, PSD, Boulder, CO, USA [https://psl.noaa.gov/data/gridded/].

Code availability
The data in this study is analyzed with NCAR Command Language (NCL; http://www.
ncl.ucar.edu/). The relevant codes in this work are available, upon request, from the
corresponding author T. Z.
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