

Mining for tomorrow: from technological advances in exploration and production to sustainable post-mining solutions

UTLD: An Underground Thermal and LiDAR Dataset for Depth Estimation

Zhihua Xu, Jiaxuan Lin, Qingxia Ye, Zengyi Guo

China University of Mining and Technology-Beijing (CUMT)

Vienna, Austria 1 May 2025

- ➤ Recently, global mining industries have been accelerating their transformation towards intelligence, with the developments of 5G communication, automated equipment, and digital twin techniques.
- For mining intelligence, one of the basic tasks is to achieve the 3D maps of mining space with applications, i.e., virtual reality, self-driving, remote excavation, emergency rescue, etc.

Virtual Reality

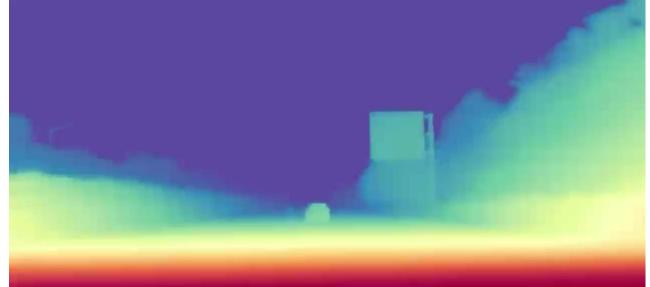
Self Driving

Remote Excavation

Robot Emergency Rescue

- ◆ Techniques for 3D mapping
- LiDAR Technique

■ Depth Estimation



- Straightforward;
- Lighting independent.

- Visual-based;
- Lighting affected.

Specific Mining Activity

Tunnel Excavation

RGB video

- Limited access to visual information
- Unable to adapt to the underground environment
- Low robustness to dust condition

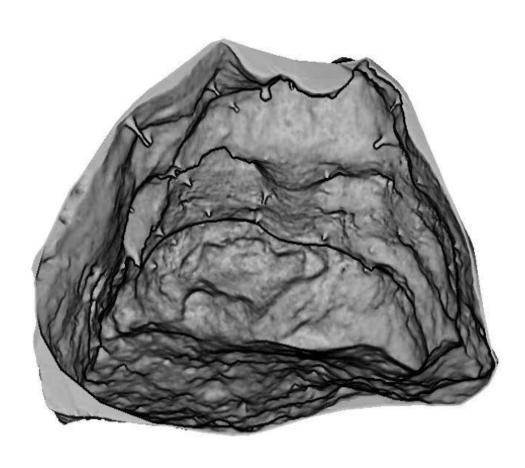
Thermal Video

- Insensitive to illumination conditions
- Adaptable to underground environments
- High robustness to dust condition

Specific Mining Activity

Tunnel Excavation

> In-site testing for LiDAR data

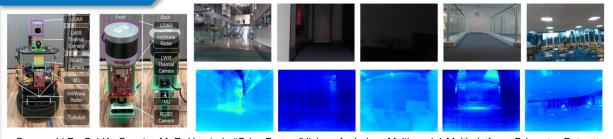


Highly sensitive to dust conditions

No data!

when the dust ratio is high

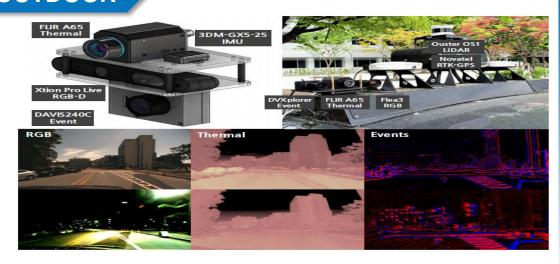
INDOOR



Source: Li P., Cai K., Saputra M. R. U., et al., "OdomBeyondVision: An Indoor Multi-modal Multi-platform Odometry Dataset Beyond the Visible Spectrum," in 2022 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2022, pp. 3845–3850.

DataSet	Year	Scene	Condition	Lidar	Thermal	
Juliuoti		0000	Condition.		Mono	Stereo
CATS	2017	In/Outdoor	Day/Night	$\sqrt{}$	\checkmark	\checkmark
KAIST	2018	Outdoor	Day/Night	$\sqrt{}$	\checkmark	×
ViViD	2019	In/Outdoor	Day/Night	V	$\sqrt{}$	×
MultiSpectralMotion	2021	In/Outdoor Day/Night		$\sqrt{}$	$\sqrt{}$	×
ViViD++	2022	Outdoor Day/Night		√	√	×
OdomBeyond Vision	2022	Indoor	Day/Night	$\sqrt{}$	V	×
MS ²	2023	Outdoor Day/Night/Rain		$\sqrt{}$	$\sqrt{}$	V
NTU4DRadLM	2023	Outdoor	Day	\checkmark	$\sqrt{}$	×
ZJU-Multispectrum Dataset	2024	Outdoor	Day/Night/Dust	V	V	×
Ours	2025	Underground Low light/Dust		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$

OUTDOOR



Source: Lee, Alex Junho, et al. "Vivid++: Vision for visibility dataset." IEEE Robotics and Automation Letters 7.3 (2022): 6282-6289.

Problems

- Low light, high dust, and complex geometry disrupt data capture by conventional vision sensors and LiDAR.
- Most depth estimation datasets focus on indoor/outdoor scenes, limiting research and practical applications in underground mines.

Lack of datasets for underground scenes

Dataset Overview

◆ Data Acquisition Platform

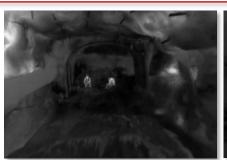
- > Remotely controlled robot
- > Thermal camera and Laser scanner sensors in stereo configuration

Dataset Overview

Study Areas

✓ Coal mine

- **Depth**: -800 m
- Scene elements: excavation face, tunnels, vehicles...



✓ Metal mine

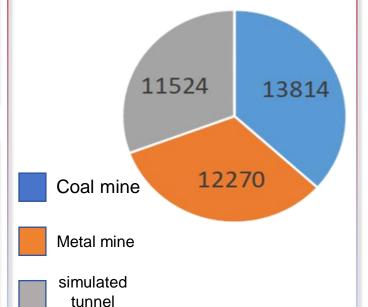
- **Depth**: -325 m
- Scene elements: Tunnel, person, vehicles...

√ Simulated tunnel

- **Depth**: -10 m
- Scene elements: Excavation face, person, vehicles...

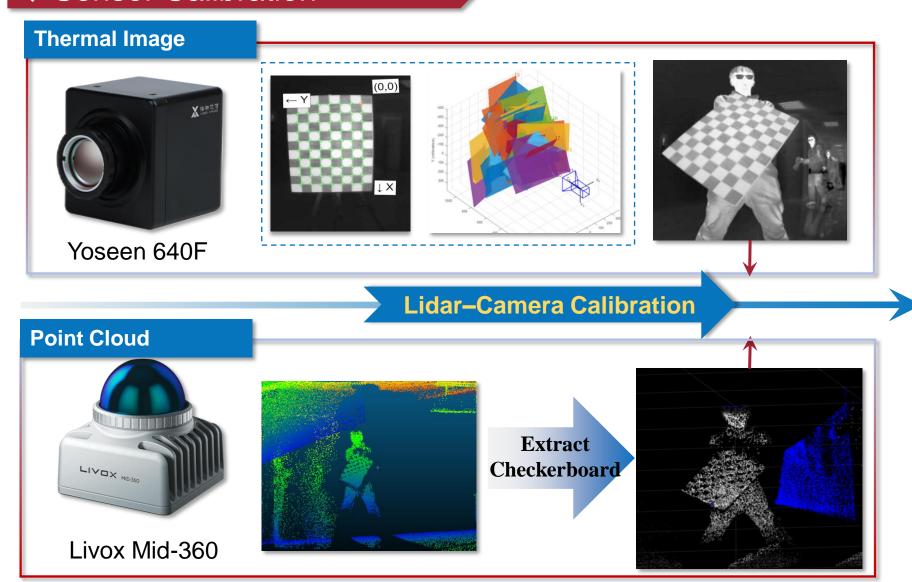
Dataset statistics

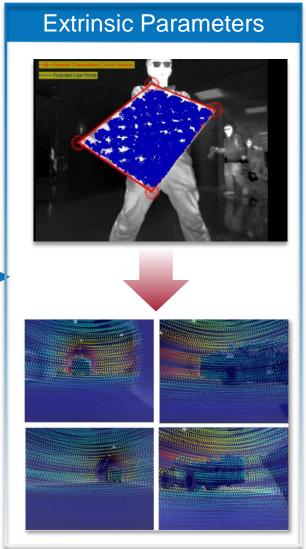
The UTLD dataset comprises 13,814 coal-mine images, 12,270 metal-mine images, and 11,524 simulated-tunnel images, for a total of 37,608 images.



Dataset Overview

◆ Sensor Calibration

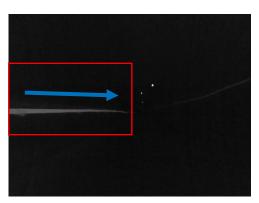


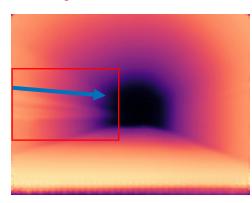


Benchmarking Depth Estimation Methods

♦ Quantitative Evaluation

- ☐ Eight classic Monocular depth estimation methods were used for Benchmarking the UTLD dataset.
- **Error increases with distance**
- <15m: Adabins best; 15–20m: PixelFormer best in metal mine and simulated-tunnel; > 20 m: Transdepth and Adabins lead the results.
- Error: Simulated tunnel > Coal mine > Metal mineDue to its minimal temperature variation.





> Average RMSE ranges from 0.1 m to 0.25 m (0-5m).

	T	able1. Coal m	nine	
Model	Туре	0-5m	5-10m	10-15m
BTS	R	0.66	1.34	2.34
GLP	R	0.36	0.68	1.01
Transdepth	R	0.26	0.55	1.01
SwinV2-T	R	0.35	0.63	1.02
Newcrfs	R	0.26	0.5833	0.99
Adabins	R+C	0.25	0.54	0.97
IEbins	R+C	0.27	0.63	1.02
PixelFormer	R+C	0.25	0.57	0.96

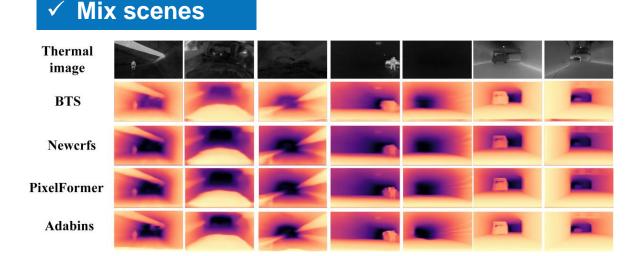
		mine					
	Model	Type	0-5m	5-10m	10-15m	15-20m	20+m
	BTS	R	0.48	1.12	2.12	2.90	2.98
	GLP	R	0.38	0.4994	0.75	0.95	1.67
	Transdepth	R	0.14	0.28	0.60	0.88	1.25
	SwinV2-T	R	0.37	0.47	0.7491	0.98	1.80
_	Newcrfs	R	0.13	0.28	0.58	0.92	1.65
	Adabins	R+C	0.12	0.26	0.56	0.90	1.94
	IEbins	R+C	0.15	0.3115	0.6051	0.89	1.65
	DivelFormer	$\mathbf{P}_{\perp}\mathbf{C}$	0.13	0.2800	0.5726	0.83	1 35

Table3. Simulated tunnel							
Model	Туре	0-5m	5-10m	10-15m	15-20m	20+m	
BTS	R	0.32	0.82	1.64	3.01	4.79	
GLP	R	0.30	0.74	1.72	2.21	3.14	
Transdepth	R	0.23	0.56	1.09	2.00	3.03	
SwinV2-T	R	0.35	0.72	1.18	2.00	3.08	
Newcrfs	R	0.24	0.60	1.35	2.04	3.15	
Adabins	R+C	0.21	0.60	1.08	1.98	2.98	
IEbins	R+C	0.24	0.71	1.30	2.19	3.14	
PixelFormer	R+C	0.24	0.59	1.10	1.96	3.02	

Benchmarking Depth Estimation Methods

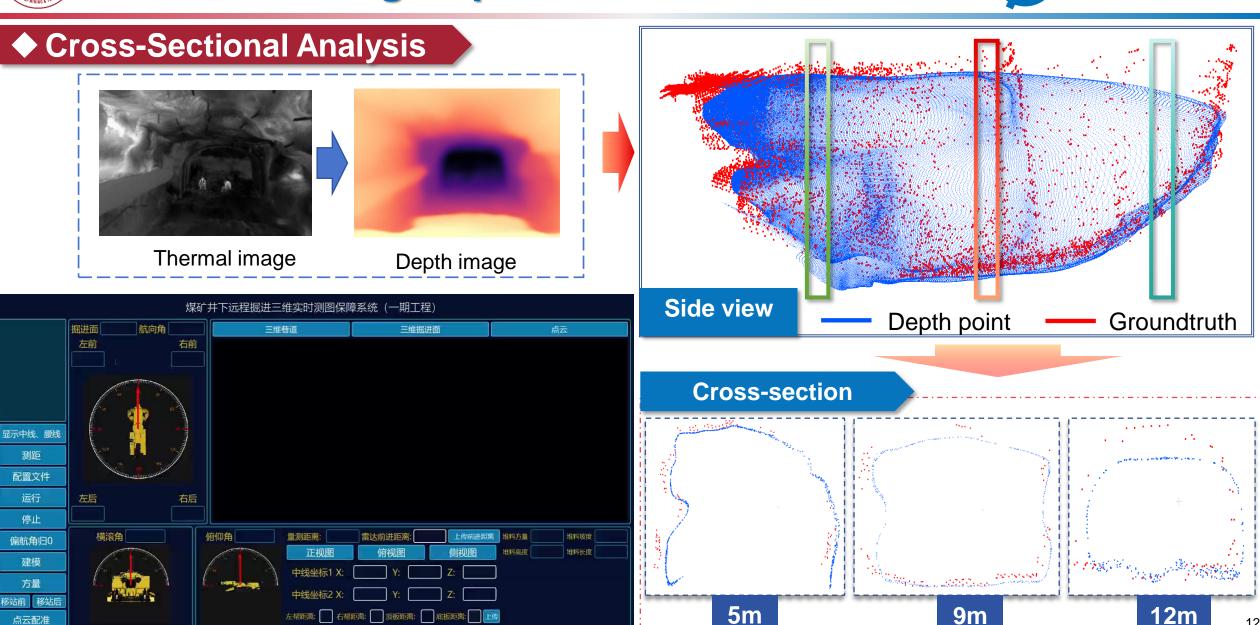
♦ Qualitative Evaluation

- > Reasonably captures the scene's overall geometry
- > Struggles to estimate depth for moving objects
- > Blurred boundaries



Coal mine Metal mine ✓ Simulated tunnel **Thermal Thermal** Thermal image image image **BTS BTS** BTS **Newcrfs Newcrfs Newcrfs PixelFormer PixelFormer PixelFormer Adabins Adabins Adabins**

Benchmarking Depth Estimation Methods

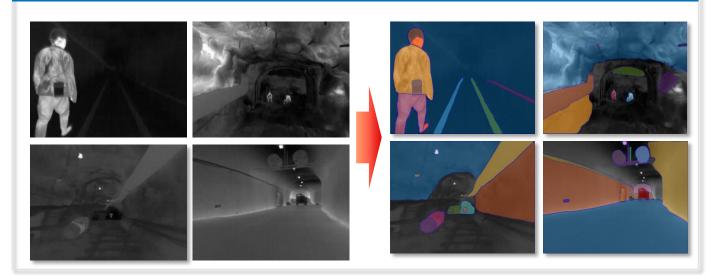


Challenges & Opportunities

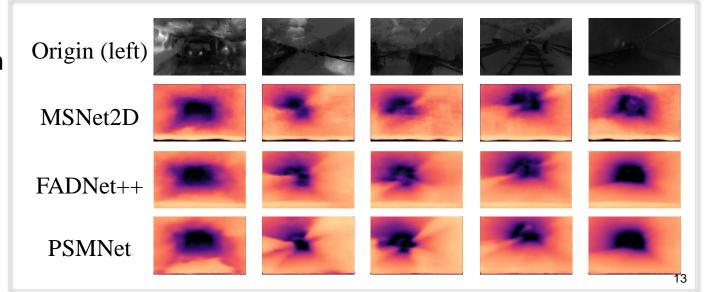
♦ Future work

- ➤ Real-time segmentation
- Multi-modal fusion (LiDAR + thermal)
- Domain adaptation to diverse mining activities

Semantic-guided underground depth estimation



- ☐ Binocular Thermal image Depth Estimation
- > Semantic guided stereo matching
- > Stereo matching in low-texture scenes
- Stereo matching in low-contrast scenes

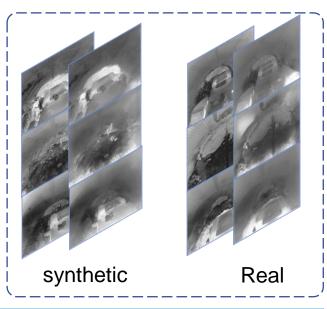


Challenges & Opportunities

Dust Thermal Dataset For Mine Excavation Faces

Image quality improvement

We assembled a thermal image dataset comprising both real and synthetic thermal images under dusty and clear conditions.



Fundamental p	arameters	Numerical value	
Dataset_name		TF-Dust	
Optical response band		8–14µm	
lmage_size		720*720	
line a si a a	authentic	100 pairs	
Images	synthetic	10000 pairs	
Temperature measurement range		-20°C-150°C	

Dust-Removeal Algorithm test

Dusty MGBL GridDehaze Net CycleGAN ConvIR Truth

Metric/methods	CycleGAN	GridDehazeNet	MGBL	ConvIR
PSNR_AVR	18.969	23.494	28.935	33.84
SSIM_AVR	0.658	0.868	0.896	0.964
Runtime_AVR	0.606	0.712	0.033	0.10

Our Team

Zhihua Xu received the Ph.D. degree in cartography and geographic information system from the Key Laboratory of Environment Change and Natural Disaster, Ministry of Education, Beijing Normal University, Beijing, China, in 2016. He is currently an Associate Professor with the College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, China. His research interests include UAV photogrammetry and LiDAR data processing.

Research Team

Jiaxuan Lin received the Bachelor of Engineering degree in remote sensing science and technology from China University of Mining and Technology (Beijing) in 2021. He is currently pursuing the M.Eng. degree in surveying and mapping engineering at China University of Mining and Technology (Beijing) and is expected to graduate in 2025. His main research interests include image depth estimation, multi-modal data fusion for 3D scene reconstruction.

Qingxia Ye received the B.Eng degree in Chengdu University of Science and Technology, Sichuan, China, in 2024. She is currently pursuing the M.Eng. degree in surveying and mapping engineering at China University of Mining and Technology (Beijing), Beijing, China. Her research interests include Simultaneous Localization and Mapping (SLAM) and computer vision.

Zengyi Guo received the B.Eng. degree in Shandong University of Science and Technology, Qingdao, China, in 2023. He is currently pursuing the M.Eng. degree in photogrammetry and remote sensing with the College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, China. His research interests include computer vision and LiDAR data processing.

Thank you for your attention!

Questions are welcome

Zhihua Xu, Jiaxuan Lin, Qingxia Ye, Zengyi Guo

Email: z.xu@cumtb.edu.cn