
Introduction and Objective

Hydrogen (H₂) will play a pivotal role in achieving the European Union (EU) Green Deal's goal of climate neutrality by 2050. However, without technical countermeasures, venting, depressurization, and fugitive emissions of H₂ could raise atmospheric H₂ levels. Since H₂ can react with hydroxyl radicals in the atmosphere, extending methane's lifetime and increasing ozone and water vapor production, it can be qualified as an indirect greenhouse gas [1]. To date, there is still uncertainty regarding the amount of the H₂ releases expected along the future H₂ value chain and the associated environmental impact [2,3]. A dedicated normative framework, including testing methodologies for hydrogen releases, does not exist.

The aim of the NHyRA project is to address these critical knowledge gaps by assessing potential H₂ releases along the entire H₂ value chain and its measurement to contribute to H_2 value chain development with least climate impact.

Methods

- \Box WP1 identifies the H₂ supply chains and units process to design a H₂ releases inventory.
- \Box WP2 develops the protocols and methodologies for quantification of H₂ releases in most critical elements of H₂ value chain.
- \Box WP3 validates the methodology and quantification of H₂ releases through experimental testing.
- □ WP4 defines the H2 releases mitigation strategy and estimates H2 releases along the supply chain.
- \Box WP5 assesses total H₂ releases scenarios.
- U WP6 develops and implements activities related to dissemination, communication and exploitation. WP7 ensures the smooth and timely project implementation.
 - MONITORING METHODS

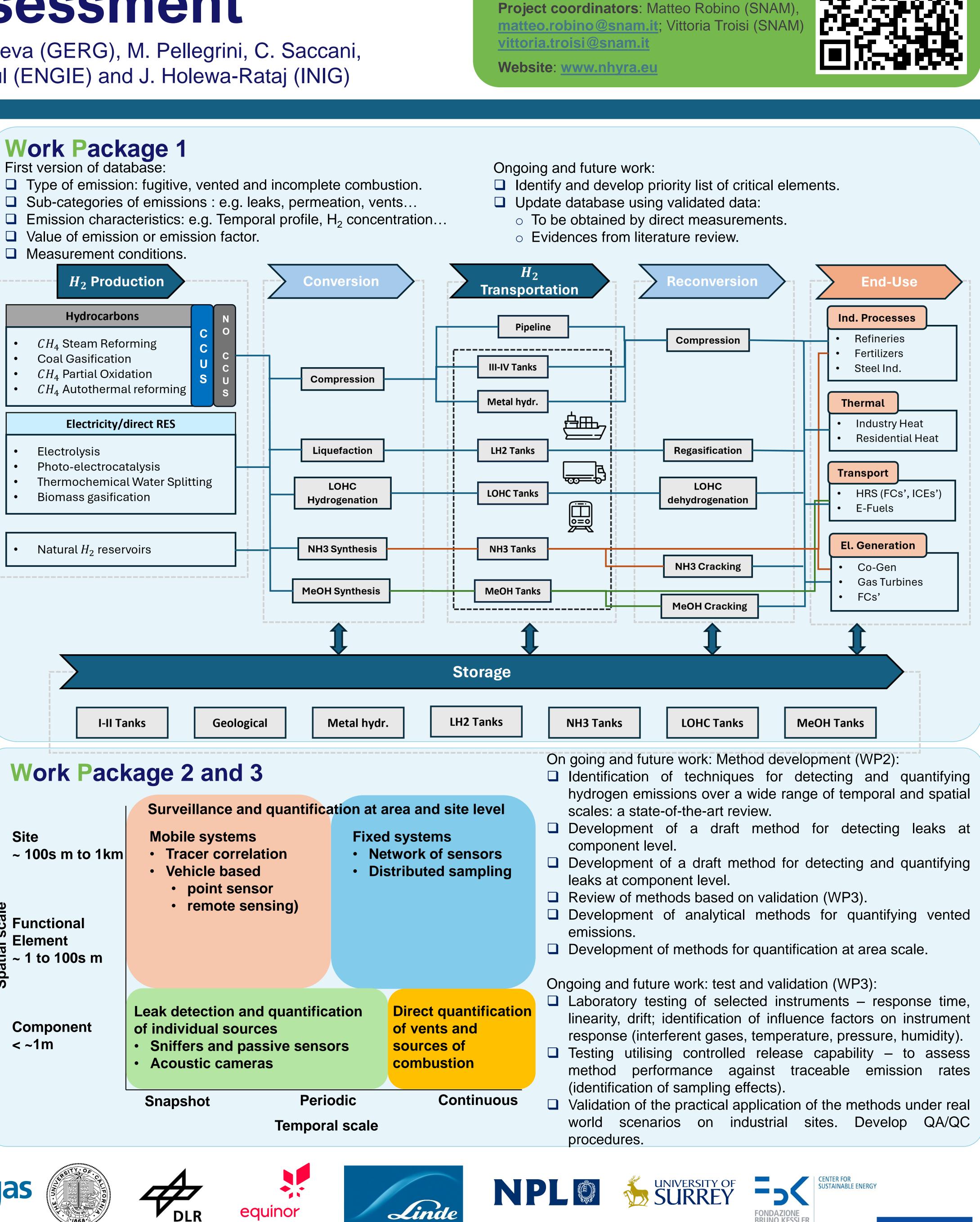
Expected Outcomes

- Identification, quantification, and preparation of an **inventory** of the types of **anthropogenic H₂ releases** expected throughout the H₂ value chain.
- · Development and validation of reliable detection and quantification methods, new data and rigorous calculation-based models to measure H_2 **releases** from the H₂ value chain in the middle (2030) and long term (2050).
- Provide recommendations for interested stakeholders, including industrial and academic researchers involved in the assessment of H₂ release and its impact on the atmosphere, but also to policy makers.
- Deliver a complete and detailed report about H₂ economy scenarios with a focus on possible benefits of **potential** H_2 release **mitigation strategies**.

L AND GAS INSTITUTE National Research Institute

Acknowledgements

This project has received co-funding from the European Commission and the Clean Hydrogen Partnership under Grant Agreement No. 101137770. This Partnership receives support from the European Union's Horizon Europe Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.


pre-Normative Research on Hydrogen **Releases Assessment**

A. Connor (NPL), M. Robino (SNAM), A. Kostereva (GERG), M. Pellegrini, C. Saccani, A. Guzzini (UNIBO), P. Piras (FBK), J. Clavreul (ENGIE) and J. Holewa-Rataj (INIG)

NP3. METHODOLOGY VALIDATION AND FIELD TESTS ASSESSMENT (NPL)			
IODOL	OGY? EXPERIMENTAL H ₂ RELEASES VALUES	COMMUNICATION I (GERG)	
NIBO)			
SULTS	H ₂ RELEASES INVENTORY	: DISSEMINATION EXPLOITATIC	
NP4. H	2 RELEASES FROM SUPPLY CHAINS (ENGIE)	WP6:	
TEGIES	5		
f	References		scale
)	[1] Ocko, I. B. and Hamburg, S. P., <i>Climate consequences of hydrogen emissions</i> , Atmos. Chem. Phys., 22, 9349–9368, 2022		Spatial s

Site

[2] Arrigoni, A. and Bravo Diaz, L., Hydrogen emissions from a hydrogen economy and their potential global warming impact, EUR 31188 EN, Publications Office of the European Union, Luxembourg, 2022, JRC130362 [3] Cooper J. et al., Hydrogen emissions from the hydrogen value chain-emissions profile and impact to global warming, Science of The Total Environment, Volume 830,2022, 154624

About the project

Duration: Jan 2024 - Dec 2026 **Budget:** 3,5 M€

Co-funded by the European Union