Köhler, Sovilla, Gauer, Fischer

Research Question

Method

Data processing

Characteristic velocity v_c Max. Intensity velocity v_l Velocity factor f_v Head length l_v

High-velocity head

Head of 3 avalanches Minimum approach velocit Velocity distribution

Conclusion

Velocity distributions in the head of cold-dry snow avalanches

Anselm Köhler¹, Betty Sovilla², Peter Gauer³, Jan-Thomas Fischer¹

¹Austrian Research Centre for Forests BFW, Natural Hazards, Innsbruck, Austria ²WSL-Institute for Snow and Avalanche Research SLF, Davos, Switzerland ³Norwegian Geotechnical Institute NGI, Oslo, Norway

contact: anselm.koehler@bfw.gv.at

Köhler, Sovilla, Gauer, Fischer

Research Question

Motivation, Research Question and Hypothesis

> Understand the characteristics of a fully developed powder snow avalanche

- ? When does a cold-dense avalanches evolves into a powder snow avalanche?
- ? Is the **front velocity** a **representative** measure for dry snow avalanches
- ! Above a certain velocity / size: A high-velocity head develops

Köhler, Sovilla, Gauer, Fischer

Research Question

Method

Data processing

 $\begin{array}{l} \mbox{Characteristic velocity } v_c \\ \mbox{Max. Intensity velocity } v_l \\ \mbox{Velocity factor } f_v \\ \mbox{Head length } l_v \\ \mbox{Maximum head velocity } \widehat{v_l} \end{array}$

High-velocity head

Head of 3 avalanches Minimum approach velocity Velocity distribution

Conclusion

Radar observations of cold-dry snow avalanches

- We measure avalanche velocities with a range-gated Pulse Doppler Radar
- analyze 30 avalanches from 3 pathes with dropheights 400, 900 & 1200 m

- The radar "sees" all material larger λ ≈ 5 cm, averaged in range-gates:
 Powder cloud ✗, intermittent/fluidized layer ✓, dense flow ✓(mostly surface)
- $\rightarrow\,$ Mass, volume & density are difficult to infer from radar cross-section

1400

1200

Ξ ¹⁰⁰⁰

800

600

400

200

0

Range [

Characteristic

approach velocity:

Intensity dB

(mean of 0.5-40.5m/s)

20

25 50

10

 $v_{r} = 40 \text{ m/s}$

30

50

60 70 80

40

Time [seconds]

Method

Data processing

Characteristic velocity v_e Max. Intensity velocity v_l Velocity factor f_v Head length l_v Maximum head velocity $\widehat{v_l}$

High-velocity head

Head of 3 avalanches Minimum approach velocity Velocity distribution

Conclusion

Range-Time Diagram of Radar intensities

34

- sampled in 25 m range-gates at 10 Hz
- Slope of features \rightarrow velocity
- characteristic approach velocity v_c from a manually defined tangent at highest velocity (steady state) (not valid for accel-/decceleration)

But Doppler radar gives more: velocity distribution ...

Köhler, Sovilla, Gauer, Fischer

Research Question

Method

Data processing

Characteristic velocity v_c

Max. Intensity velocity v_l Velocity factor f_v

Head length I_{v} Maximum head velocity \widehat{v}_{i}

High-velocity head

Head of 3 avalanches Minimum approach velocity Velocity distribution

Conclusion

Velocity distribution inside a Doppler datacube

A velocity spectrum $I_{r,t}(v)$ is measured for each range-gate r and pulse t over a spatial slice through the full avalanche width

• Velocity at which "most" material flows: Velocity at maximum intensity v_l \triangleright Definition of **velocity factor** $f_v = \frac{v_l}{v_c}$ between material and approach velocity

1600

Research Question

Method

Data processing

Characteristic velocity v_c Max. Intensity velocity v_l Velocity factor f_v

Head length I_v Maximum head velocity $\hat{v_I}$

High-velocity head

Head of 3 avalanches Minimum approach velocity Velocity distribution

Conclusion

Range-Time diagram indicates high velocity region

10a (267) -

High velocities define the avalanche head and promote frontal surging

- High-velocity head for $f_{
 m v} > 1$ (red)
 - Distribution of head velocities v_l (inset)
- Head length I_{v} is distance to front
- Maximum head velocity \hat{v}_l (yellow dot)

Köhler, Sovilla, Gauer, Fischer

Head of 3 avalanches

Avalanche head for three avalanche sizes

Examples from 3 avalanche pathes:

Köhler, Sovilla, Gauer, Fischer

Research Question

Method

Data processing

Characteristic velocity v_c Max. Intensity velocity v_v Velocity factor f_v Head length l_v

Maximum head velocity

High-velocity hea

Head of 3 avalanches Minimum approach velocity Velocity distribution

Conclusion

Head formation: velocity as requirement

- Formation of high-velocity head above pprox 30 m/s ightarrow min. velocity for PSA
- But environmental conditions (snow temperatures, volumes, etc.) are crucial

Köhler, Sovilla, Gauer, Fischer

Research Question

Method

Data processing

Characteristic velocity v_c Max. Intensity velocity v_l Velocity factor f_v Head length l_c Maximum head velocity $\widehat{v_l}$ **High-velocity head** Head of 3 avalanches

Minimum approach velocity Velocity distribution

Conclusion

Intensity distribution at maximal velocity $\widehat{v_l}$

Looking at the spectrum of points with heighest material velocities in the head:

- NK (300hm): $\hat{f}_{v}=1.05$, area=46.5% > 1) RGF (900Hm): $\hat{f}_{v}=1.17$, area=50.3% > 1 2.0 VdIS (1400hm): $\hat{f}_{\nu} = 1.37$, area = 52.9% > 1) Scaled intensity B 0.5 -00-0.25 1.00 1.25 1.50 1.75 0.00 0.50 0.75 2.00 Velocity factor f
- Averaged distribution for all avalanches
 - A distribution peak shifts with size \rightarrow main material flow
 - **B** maximal velocities are 50-80% higher than characteristic approach velocity v_c
 - ightarrow small scale features
 - **C** always low velocities \rightarrow rangegate volume average
 - Is A or B the most destructive zone in the avalanche?
 - $\rightarrow\,$ We miss the density ρ to estimate impact forces that are $\propto\,\rho v^2$

Köhler, Sovilla, Gauer, Fischer

Research Question

Method

Data processing

Characteristic velocity v_c Max. Intensity velocity v_l Velocity factor f_v

Head length I_v Maximum head velocity \widehat{v}_i

High-velocity head Head of 3 avalanches Minimum approach velocity

Conclusion

Conclusions and summing up

- High-velocity head develops above \approx 30 m/s in powder snow avalanches:
- $\rightarrow\,$ approach velocity underestimates material velocities up to 30-40%
- $\rightarrow\,$ approach velocity underestimates highest velocities up to 50-80%
- High-velocity head supports frontal surging and may explain the high mobility of fully-developed powder snow avalanches
- Approach velocity is a limited design parameter for impact forces (density?)

Further open question:

- ? Which conditions (volume, topographie, snow properties) favour the growth and maintenance of the head?
- ? How can we incorporate the results in current numerical models?