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== Challenge: transform knowledge on past processes into future psg
projections for the Earth system =
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m» (Challenge: transform knowledge on past processes gp oF
Into future projections for the Earth system

Tipping points in the climate
system

» Relevant for societies: regional
scale

» Extreme events, variability
» Abrupt changes
» Cascading impacts or tipping

ololelele)

Closest to tipping - due to global warming

BIOSPHERE CRYOSPHERE OCEAN & ATMOSPHERE CIRCULATIONS
Fu n d e d b I Tropical dry forest [ Lakes _ Greenland Ice Sheet I Atlantic Meridional Overturning Circulation (AMOC)
y I Tropical rainforest mms Coral reefs @ FR R | West Antarctic Ice Sheet @ Mgy Subpolar Gyre (SPG) @
the Eu ropean Union [ Boreal forest Mangroves _ Non-marine East Antarctica Mgy Southern Ocean Overturning
I Tundra RN Fisheries I Marine basins East Antarctica 5 West African monsoon
7 Savannas & grasslands Seagrass 177705 Permafrost (B) Lenton etal.,2023: The Global Tipping Points

Drylands [ Kelp forest _ Mountain glaciers

Report 2023.
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== Solution part 1: Evaluate and improve Earth System P2
Models through paleoclimate constraints

» Model development of CMIP-class comprehensive ] T
Earth System models (CESMs) i agezin
» Snapshot simulations and model-data comparison e B

with cESMs
» “Grand Challenge” of tuning cESMs to paleo-time

slices
'n -‘ > Development and improvement of fast Earth System
L models (fESMs)
ﬁ- .' » Constrain long-term climate change, variability, and
interactions between climate components with

\‘ ', fESMs
Future simulations with improved paleo-informed

Funded by ESMs (fast and comprehensive)

the European Union




== Solution part 2: Integrate and re-evaluate paleoclimate «P2F
data and add key paleo-proxy reconstructions to key ==
sites and time intervals

» |lce core, terrestrial and marine records . .
» Extend instrumental time series into both colder - - -
and warmer-than-modern climate states *ﬁi;:iwgg;awﬂ;;eﬁ
» Late Pleistocene (~low CO, climate) ﬁ
> Pliocene (~high CO, climate) RN T
» Deep sea temperature and global sea level  aalabay

‘ — s
-Ice sheet exte
(/

reconstructions —_—

ﬁMarine Air Temperature
> Defining the states and variability of |\w
Sea Surface Temperature

» the carbon cycle, _
marine

» theterrestrial cryosphere,

> seaice,
» the surface ocean,

» the terrestrial biosphere.
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== Solution part 3: Improve methods - response theory, patterns of P2F
natural variability and tipping behaviour ~p

develop new tools for analysis of model output or data, model validation and tuning, & testable methods
that underpin faster and more accurate climate projections.

 Inputs )
» Climate response, feedbacks and environmental limits i OUtpLES
» Spatial patterns, long-term variability and process interaction P
» Transients, extremes and abrupt changes
A Feedback
\U J

"warm”
(interglacial) : State dependence of feedbacks
*% (non-constant 1)
Abrupt 4xCO:2
in model

Global mean temperature

Abrupt 2xCO:2
in model

) von der Heydt & Ashwin, Dyn. Stat. Clim. Syst. 1 (2016)
DOI: 10.1093/climsys/dzx001

Radiative forcing (external and slow feedbacks)


https://doi.org/10.1093/climsys/dzx001

= Solution part 4: Learn about both likely and possible regional psfg
Impacts and local effects of large-scale climate on S

ecosystems, carbon cycle and societies

» Bias correction and downscaling of ESM
simulations to a scale of a few kilometres for Ll

impact analysis 39:@

» Impact of climate trends, variability and abrupt

changes on the terrestrial biosphere
» Cascading impacts of abrupt warming events and

extremes on carbon cycle and ecosystems (B/A

onset, Holocene)

Potential cascade within D/O events

ATMOSPHERE
[ ssT |
change

| AMOC
recovery |=—

[ Northern
seaice
_decrease

M0|sture
source

' Stronger Asian T«
and weaker
Less dust in
South American m
monsoons

Wunderling, vdH et al., 2024.
Earth Syst. Dyn. 15, 41-74.

https://doi.org/10.5194/esd-15-41-2024

» Climate impact on past societies
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l Archaeological data and modelling
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