

Inconsistent Methods Compromise the Estimation of Soil Carbon Stock Changes under Perennial Cropping Systems

Yiwei Shang, Diego Abalos, Zhi Liang, Jørgen E. Olesen Department of Agroecology Aarhus University

Perennial cropping systems for climate mitigation

Inconsistent methods for estimating soil C stock changes

• Fixed depth (FD)

Soil depth-based C stock

Soil C stock = C content \times Bulk density \times Depth

• Equivalent soil mass (ESM)

FD soil C stock corrected by soil mass

They draw the same conclusion only when considering the entire soil prefile

Inconsistent methods for estimating soil C stock changes

Absolute change ("change over time")

Soil C stock change = C stock_i - C stock₀

Relative change ("space-for-time")

Differences methods may lead to different conclusions

EGU25 | YIWEI SHANG 29 APRIL 2025 | PHD STUDENT (Shang et al., in prep.)

Meta-analysis

Hypothesis:

ARHUS

MENT OF AGROECOLOGY

The fixed-depth (FD) method and the relative change approach introduce biases in estimating soil C

stock changes under perennial cropping systems.

Methodological differences

- Perennial cropping systems significantly enhanced topsoil and cumulative soil C stocks
- FD-relative change approach showed significant differences with other methods

Differences between cropping systems

- Four types of perennial cropping systems significantly enhanced topsoil C stocks;
- Integrated rotation showed soil C loss in subsoil, and had no effects on cumulative soil C stocks

Differences between cropping systems

- Four types of perennial cropping systems significantly enhanced topsoil C stocks;
- Integrated rotation showed soil C loss in subsoil, and had no effects on cumulative soil C stocks

(estimated by ESM-absolute change)

Previous land use

• The effect of perennial cropping system on soil C stock changes also depends on previous land use, which determines the initial soil C content.

Conclusion and perspectives

To improve the accuracy and comparability of future research, we strongly recommend the adoption of standardized methods for estimating and reporting soil C stock changes.

- Improve method: missing initial soil C stock may lead to bias, and soil C stock changes need to be corrected for bulk density. ESM-based absolute change could be the most robust approach, but further validation in independent studies is needed.
- Improve cropping systems: integrating perennial crops into rotations did not enhance soil C stocks.
- Consider subsoil: enhancing subsoil C stocks remains a challenge in perennial cropping systems.
- Consider previous land use.

(Shang et al., in prep.)

Thank you for your attention!

Contact: Yiwei Shang

ywshang@agro.au.dk

Aarhus University

Department of Agroecology

Climate and Water Section

AARHUS UNIVERSITY DEPARTMENT OF AGROECOLOGY Scan for the abstract

