

A Comparative Analysis of Data-Driven Machine Learning Models for Rainfall Forecasting in Bangladesh

Mir Mahmid Sarker¹, Arish Morshed Zobeyer², Tasnuva Rouf³, and S M Mahbubur Rahman⁴

¹Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh ²Institute of Water Modeling (IWM), Dhaka, Bangladesh ³National Oceanic and Atmospheric Administration (NOAA), Maryland, United States ⁴Institute of Water Modelling (IWM), Dhaka, Bangladesh

Outline of Presentation

- Background of the Study
- Study Area
- Objectives
- Methodology
- Data Collection
- Model Description
- Result & Discussion
- Conclusion
- Limitations & Recommendations

Background of the Study

- Dhaka, with a population of approximately 23.9 million
- Experiences an average annual rainfall of 2,048 millimeters
- Waterlogging in Dhaka, caused by unplanned urbanization and drainage congestion
- Poor accuracy of existing models

Study Area

Objectives

To improve 1-5 day rainfall forecasts using Machine Learning algorithms.

&

To evaluate the performance of data driven models against traditional forecasting systems.

Data Collection

Data	Unit	Dataset/ Station Name	Temporal Resolution	Source	Period
Predictor Variables					
Evaporation (e)	mm	ERA5 hourly data on single levels from 1979 to present	Daily	ECMWF Reanalysis v5 (ERA5)	
Large Scale Precipitation (lsp)	m				1979-2023
Solar Surface Radiation (ssr)	J/m2				
Surface Pressure (sp)	Pa				
Temperature at 2 m (t2m)	K				
Total Cloud Cover (tcc)	-				
Total Column Rain Water (tcrw)	kg/m2				
Total Column Water Vapor (tcwv)	kg/m2				1
Target Variable					
Total Precipitation (tp)	mm	ERA5 hourly data on single levels from 1979 to present	Daily	ECMWF Reanalysis v5 (ERA5)	1979-2023
Traditional Forecast Model Data					
Precipitation data	mm	NCEP GDAS/FNL 0.25 Degree Global	Daily	Global Forecast System	2018-2023

Model Description Random Forest Regression (RF)

- Combines hundreds of small decision trees
- Each tree uses random data & random features to avoid overfitting.
- Handles messy, real-world data (like Dhaka's rainfall) better than single models.

Architecture of a typical Random Forest Regression model

Model Description Multi-Layer Perceptron (MLP)

Classic neural network with layers of "neurons."

Learns patterns by adjusting connections (weights) between neurons.

Good at finding relationships in clean data, struggles a bit with noisy, chaotic rainfall like Dhaka's!

Model Description Long Short-Term Memory (LSTM)

- Designed to remember past weather patterns.
- Looks back at **14 days** of data to predict future rainfall.
- Works best for long, smooth trends, but Dhaka's rainfall is too unpredictable!

Architecture of the LSTM model used to forecast rainfall

Pearson R Values Across Models and Lead Times (Test Set)

The RF model exhibits higher Pearson R values than the other models

RMSE (mm) Values Across Models and Lead Times (Test Set)

The RF model exhibits lower RMSE than the other models, indicating better forecast accuracy

Regression Plots for Random Forest Model

The model performance decreases as the lead time increases

Regression Plots for T+1 Day Lead Time

The Random Forest model performs significantly better than the other models

Time Series Plots for T+1 Day Lead Time

The Random Forest model tends to capture complex patterns and outliers more effectively than other methods

Comparison of Metrics for T+1 Day Lead Time

The Random Forest model performs significantly better even than the traditional model

Conclusions

- **T-day ahead forecasts performed best**, with shorter lead times showing higher accuracy
- As lead time increased, accuracy declined
- Random Forest (RF) outperformed all models with the highest accuracy.
- Long-term forecasting is challenging; all models struggled with increasing uncertainty at longer lead times

Conclusions

Random Forest's strength lies in its ensemble decision tree approach, capturing complex patterns without relying on temporal dependencies.

Feature Selection & Correlation

Some predictor variables may be highly correlated, affecting model performance. RF handles this better by automatically selecting important features, while MLP and LSTM may struggle with multicollinearity.

Temporal & Spatial Dependencies

While LSTM is designed to capture long-term dependencies. RF performs well with less sequential data and can capture short-term fluctuations better.

Limitations & Recommendations

Incorporating real-time data sources

Exploring multi-model ensemble methods

Incorporating additional input variables

Thank you for your patience!

References

- MacroTrends. (n.d.). https://www.macrotrends.net/cities/20119/dhaka/population
- Weather and Climate. (n.d.). *Average monthly precipitation Rainfall, Dhaka, Bangladesh*. <u>https://weather-and-climate.com/average-monthly-precipitation-Rainfall,Dhaka,Bangladesh</u>
- Picture: https://bdnews24.com/bangladesh/b1b7a43dc9be, https://images.app.goo.gl/3zaiFTCcwLhX94Zc9
- <u>https://images.app.goo.gl/czCBzt6gaRHNRn238</u>
- https://medium.com/@bhatadithya54764118/day-16-random-forests-enhancing-decision-trees-forimproved-predictions-6a8a32134b7e