

References [🗄 [1] Milillo A. et al. (2005) Space Science Reviews, 117 [2] Moroni M. et al. (2023) Icarus 401 [3] Mura A. et al. (2023) Icarus 401 [3] Mura [5] Orsini S. et al. (2024) Scientific Reports 14.1: 30728. [6] Plainaki C. et al. (2016) J Space Weather Space Clim 6 A 31 [7] De Angelis E. et al. (2016) J Space Weather Space Clim 6 A 31 [7] De Angelis E. et al. (2016) J Space Weather Space Clim 6 A 31 [7] De Angelis E. et al. (2016) J Space Weather Space Clim 6 A 31 [7] De Angelis E. et al. (2016) J Space Weather Space Clim 6 A 31 [7] De Angelis E. et al. (2016) J Space Weather Space Clim 6 A 31 [7] De Angelis E. et al. (2016) J Space Weather Space Clim 6 A 31 [7] De Angelis E. et al. (2016) J Space Weather Space Clim 6 A 31 [7] De Angelis E. et al. (2016) J Space Weather Space Clim 6 A 31 [7] De Angelis E. et al. (2016) J Space Weather Space Clim 6 A 31 [7] De Angelis E. et al. (2016) J Space Weather Space Clim 6 A 31 [7] De Angelis E. et al. (2016) J Space Weather Space Clim 6 A 31 [7] De Angelis E. et al. (2016) J Space Weather Space Clim 6 A 31 [7] De Angelis E. et al. (2016) J Space Weather Space Clim 6 A 31 [7] De Angelis E. et al. (2016) J Space Weather Space Clim 6 A 31 [7] De Angelis E. et al. (2016) J Space Weather Space Clim 6 A 31 [7] De Angelis E. et al. (2016) J Space Weather Space Clim 6 A 31 [7] De Angelis E. et al. (2016) J Space Weather Space Clim 6 A 31 [7] De Angelis E. et al. (2016) J Space Weather Space Clim 6 A 31 [7] De Angelis E. et al. (2016) J Space Weather Space Clim 6 A 31 [7] De Angelis E. et al. (2016) J Space Weather Space Clim 6 A 31 [7] De Angelis E. et al. (2016) J Space Weather Space Clim 6 A 31 [7] De Angelis E. et al. (2016) J Space Weather Space Clim 6 A 31 [7] De Angelis E. et al. (2016) J Space Weather Space Clim 6 A 31 [7] De Angelis E. et al. (2016) J Space Weather Space Clim 6 A 31 [7] De Angelis E. et al. (2016) J Space Weather Space Clim 6 A 31 [7] De Angelis E. et al. (2016) J Spa Contact authors 🏹 alessandro.brin@inaf.it - elisabetta.deangelis@inaf.it Acknowledgment 🐼 This work has been supported by ASI

m system	Pump system (scroll + turbopump) able to reach pressures up to 10 ⁻⁷ mbar
i beam	IQP 10/63 Penning discharge type ion source with energy range of 0 - 5 keV
ectrometer	Pfeiffer compact mass spectrometer with mass range 1 – 200 amu
species	He/Ar
ens system	Adjustable beam intensity (range nA-mA)
arameters	Spot size : 2.5 mm (adujustable); Divergence: 0.76°

analysis of samples using VIS-IR spectroscopy at SLAB (Spectroscopy LABoratory at IAPS) and Raman spectroscopy to evaluate the effect of the bombardment.

Mercury Analogue: Enstatite achondrite (Aubrite)

released particles. In the second phase we will set up the ELENA FS to analyse the direction of particles backscattered from the surface analogues during ion bombardment, providing ground truth to the ELENA experiment on BepiColombo .

