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• Measurements of 100% kerosene-saturated (vacuum) and dry (110°C,
vacuum) rock core samples.

• Determination of differential distributions – subtracting dry and 100%
saturated sample signals before Inverse Laplace Transform (ILT).

• Selection of NMR-MICP conversion points based on the comparison of
the saturation curves in the percolation thresholds framework (Pth).

• Calculation of PSD via our Proposed Approach, incorporating the 
diffusion component and accounting for the influence of induced 
gradients, G(d) and apparent diffusion coefficient, D(d):

where: D0 is the self-diffusion coefficient of the bulk kerosene (0.88·10-9

m2/s), D∞ is the effective diffusion coefficient (m2/s) and dc is the 
characteristic pore size (m) corresponding to the centre of the sigmoid.

• The Mean Squared Error (MSE) minimization between estimated (NMR)
and measured (MICP) pore size to solve for ρ₂ and D∞.

• Validation of the NMR T2-PSD transformation results.

Determining the exact pore size distribution 
(PSD) in a rock is crucial for predicting its 
reservoir properties. In the standard low-field
NMR approach, the PSD estimation relies only on 
a linear fit of the surface relaxivity (ρ₂),
assuming free diffusion and neglecting internal
gradients (G). However, in nano- and micropore 
spaces, diffusion is restricted. Additionally, the 
magnitude of G is inversely proportional to the 
pore size and can cause substantial distortions
in the registered, short T2 relaxation times.

Challenges
• In fine-grained siliciclastic rocks magnetic 

susceptibility (Χ) significantly increases the
magnitude of internal gradients.

• Diffusion (D) in nano- and micropores for 
attainable experimental time is in the motional 
averaging regime (MAV) thus, the observed
diffusion coefficient decreases significantly.

Objective
To introduce an integrated method based on 
differential LF-NMR and porosimetry (MICP), 
allowing a realistic assessment of PSD in full
range, including nano- and micropore space, by
considering the influence of ρ₂, G and D.

PSD Estimation Results

Materials

Tested materials comprise 9 siliciclastic rock-
core samples of the Miocene age. Samples were 
taken from the wells located in South-East 
Poland, Carpathian Foredeep area.
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Conclusions
• The results obtained with the standard 

approach exceed the physically possible 
pore size values in tight pore space.

• The proposed approach enabled precise 
PSD estimation in rocks with high Χ values.
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where: T2B is bulk relaxation time (s); Fs is the pore shape factor;
ρ2 is transverse surface relaxivity (m/s); d is pore size (m); D(d) is 
the apparent diffusion coefficient (m2/s); G(d) is the magnetic 
field gradient (T/m); γ is the gyromagnetic ratio (MHz/T) and te is
echo time (s).
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• Low-field nuclear magnetic resonance (LF-NMR) measurements were 
performed using a 2 MHz Rock Core Analyser (Magritek) with field induction
of 0.05 T. CPMG-T2 sequence was applied using te = 60 μs, RT = 5 000 ms, 
NoE = 50 000 and NoS = 512.

• Reference measurements were conducted using Mercury porosimetry 
(MICP) and Nitrogen adsorption (BET) methods. In addition to the PSD,
low-field AC magnetic susceptibility (Χ) measurements were performed.

Methods
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Table of Parameters

D(d)

Approach Measured Standard Proposed

Sample Χ ρ₂ 
(μm/s)

ρ₂
(μm/s)

D∞
(m2/s)

Sandstone
(S1) 5.6·10-4 1.03 0.36 2.0·10-12

Heterolith
(H1) 1.2·10-4 0.61 0.15 4.5·10-11

Mudstone
(M1) 1.7·10-4 0.87 0.32 2.3·10-11

D∞ = (6.45·10-19)·Χ-2

R2 = 0.99

H1
M1

S1
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