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1. This AI-tool, including both Infilling and Prediction, demonstrates a 
very good performance with the ERA5-Land validation dataset, 
showing strong correlations and small errors.  

2. The initial tests show the feasibility of using this product as an Early 
Warning System working in near real-time.

3. The initial tests with AEMET obs are encouraging, showing realistic 
wind speed maps and capturing the temporal NSWS variation at 
each location relatively well.  

• Accurate forecasts of gridded near surface wind speed (NSWS) impact 
numerous socioeconomic and environmental fields. For instance, wind power 
is a leading source of renewable energy in several European countries: 
Denmark (50%), Ireland (40%) and Spain(23%). 

• Current limitations:
• Meteorological Stations: While they provide realistic observations, showing 

local or extreme events, they are not gridded data.
• NWP models: They provide gridded data but often fail to capture local or 

extreme events, particularly in complex orographic areas (e.g., Valencia 
region). Additionally, they require substantial computational resources, 
specially at high spatial/temporal resolutions.  

Motivation

Methodology

Objectives
• To develop an AI-based tool for short-term forecasting (<12h, σ=1h) of gridded 

NSWS data using meteorological observations. The tool utilizes a two-stage deep 
learning approach, which should be developed and tested: 

• Infilling: To employ a UNet NN for infilling NSWS maps from met. observations.
• Prediction: To use a Conv-LSTM NN for predicting NSWS maps from infilled maps.

• To build a model capable of generating fast predictions (just a few seconds), 
combining the strengths of both approaches, reanalysis and observational data.  

• The future goal will be to provide a high resolution Early Warning System ([km, h] or 
less, depending on the data used) providing near real-time predictions. 
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Results

AI-based Prediction of Short-Term Wind 
Speed in Spain 

Conclusions

Next steps:

Contact information

1. A new training strategy will be implemented in which the AEMET obs 
alongside ERA5-Land data are incorporated so that the model outputs  
are better aligned with AEMET obs, making it more representative of 
station-measured wind patterns.

2. Test higher spatial res datasets: NEWA (σ~3km) or WRF (σ~1km).
3. Denser met. stations in small regions (AVAMET in Valencia).
4. Test other NN architectures like GraphNN and transformers.

        marcos.martinez.roig@csic.es
        /MarcosMartinezRoig/
        https://climatoclab.csic.es/
        @ClimatocLab
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• Quality Control: 
            - Remove duplicates
            - Remove outliers
• Spatial consistency 

(TitanLib).
• ERA5-L grid projection.
• Normalization per coords

• Trained with 
masked 
ERA5-Land

• Inferred with 
AEMET obs.

INFILLING PREDICTION (12h ahead, σ=1h)
Input Infilled ERA5-Land (GT) 

ERA5 validation
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AEMET (first results)

ERA5 vs Prediction (per pixel comparison)

ERA5-Land Infilling. vs Obs
ERA5-Land:
Corr: 0.873 ± 0.073
RMSE: 1,219 ± 0.267 m/s

Met stations:
Corr: 0.773 ± 0.045 
RMSE: 1.098± 0.272 m/s

Temporal Corr.

Corr: 0.8771 ± 0.0264

Temporal RMSE

RMSE: 0.573 ± 0.271 m/s

The model compress 

variability towards 
the mean
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