

From Surface to Spectra: Characterising TRAPPIST-1e's Atmosphere and Climate Marija Krilanović^{1,2}, Nikolai Piskunov², Michael Way^{2,3}, Linn Boldt - Christmas², Erik Sahlée¹, Thomas Fauchez^{4,5}

ja.krilanovic.2872@student.uu.se

INTRODUCTION

TRAPPIST-1e, a rocky **exoplanet** in the habitable zone, is a prime candidate for habitability studies due to its Earth-like mass, radius, and gravity. Its tidally **locked** orbit creates stark day-night contrasts. Characterising such atmospheres remains difficult due to observational and modelling limitations. This study uses data from the **ROCKE-3D** climate model to **characterise possible atmospheric** scenarios for TRAPPIST-1e and assess the observational precision needed to distinguish between them with current and future instruments.

METHODS

Instruments:

- JWST MIRI (Space-based)
- VLT CRIRES+ (Ground-based)
- ELT ANDES (Ground-based)

Modelling:

• ROCKE-3D [1]

Tools:

- Planetary Spectrum Generator
- Panoply

- **Transmission spectrum** primary transit 2. Emission spectrum - planet's thermal radiation
- **Reflection spectrum** starlight reflected by the planet's atmosphere or surface

Plane Radius	t Planet s Mass	Density	Orbital Period	Inclination	Semi- major Axis	Surface Gravity	Irradiation
0.92 Re	[2] 0.69 M _e [2]	0.89 _{Pe} [2]	6.1 days [2]	89.79° [2]	0.03 AU [2]	0.93 g [3]	0.66 S _e [4]
Name	Description of Atmospheric Scenario ^[5]						
Α	Arid Venus: Venus-like topography, minimal to no surface water, N ₂ -						
	dominated atmosphere + 400 ppmv CO ₂						
В	10-meter ocean in the lowest parts of Venus topography, N_2 -dominated						

- atmosphere + 400 ppmv CO₂
- \sim 310-meter ocean in the lowest parts of Venus topography, N₂-dominated atmosphere + 400 ppmv CO₂
- Aqua planet: completely ocean-covered planet, N₂-dominated atmosphere + 400 ppmv CO₂
- Aqua planet: completely ocean-covered planet, N₂-dominated
- atmosphere + 1% CO₂. 25x more CO₂ than in previous scenarios
- Aqua planet: completely ocean-covered planet, 100% CO₂ atmosphere

REFERENCES

, M. J. et al. (2017). Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General on Model for Simulating the Climates of Rocky Planets. The Astrophysical Journal Supplement Series, 231(1), 12 Agol, E., et al. "Refining the Transit-timing and Photometric Analysis of TRAPPIST-1: Masses, Radii, Densities, Dynamics, and Ephemerides." The Planetary Science Journal, 2(1):1, 2021

Grimm, S.L., et al. "The Nature of the TRAPPIST-1 Exoplanets." Astronomy & Astrophysics, 613:A68, 2018. errestrial Planets around the Nearby Ultracool Dwarf Star TRAPPIST-1." Nature, 542(7642):456–460, 2017.

IST-1 d: Exo-Venus, Exo-Earth, or Exo-Dead? The Astrophysical Journal Letters, 980(1), L7

¹ Department of Earth Sciences, Uppsala University, Lägerhyddsvägen 1, 752 37 Uppsala, Sweden ² Department of Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1, 752 37 Uppsala, Sweden ³ NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA ⁴ NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA ⁵ Integrated Space Science and Technology Institute, Department of Physics, American University, Washington DC

RESULTS

Atmospheric Characterisation:

- Surface Temperature: Most cases show "eyeball" patterns with heat concentrated at the substellar point; aqua planets have smoother gradients, arid planets stronger day-night contrasts.
- **Precipitation:** Mostly dry with substellar rainfall peaks, except in the 100% CO₂ case, which forms a horseshoe-shaped precipitation pattern.
- Global Circulation: Dominated by two Hadley-like cells; aqua planets show additional Ferrel-like cells, and CO₂ dominated scenarios exhibit reversed upper-level flow and subsidence.
- Cloud Cover and Net Radiation: Cloudiest in aqua planets; low-level clouds near the substellar point reduce reflection. Most cases experience slight net energy loss at the top of the atmosphere.
- Jet Streams: Strong Rossby waves appear in arid Venus cases; Scenario D best matches Earth-like jets; CO₂ rich cases show broken jet structure and strong asymmetry.

Spectra:

- Transmission spectra are similar across scenarios, except for the distinct CO₂ dominated case.
- Emission spectra (phase angle 3°) show growing differences at longer wavelengths.
- **Reflection** spectra (phase angle 30°) reveal the **clearest distinctions** between scenarios.

CONCLUSION

- **Tidal locking** induces extreme day-night contrasts and atmospheric dynamics, often creating "eyeball worlds" with distinct profiles compared to Earth.
- **CO₂ rich atmospheres stand out** most with atmospheric dynamics and transmission spectra.
- III. <u>Spectral differences between scenarios are least visible in</u> transmission spectra, more apparent in emission spectra, and most evident in reflection spectra.

Future work:

- I. Analysing **JWST NIRSpec**, ELT ANDES and VLT CRIRES (H & K bands), data to identifying key diagnostic wavelengths.
- II. Constructing a **climate diagram**, similar to Koppen's climate
- classification, to assess the potential habitability based on climate zones. III. Using **broadband filters** (F1500W and F1280W), for measuring precise points on the spectra.