The Water Balance of the Issyk-Kul Basin under Climate Change

Part 1: Data Mining and Model Coupling

Phillip Schuster¹, Azamat Osmonov², Alexandra von der Esch³, Alexander Georgi¹, Tobias Sauter¹

Background & Objectives

The endorheic Issyk-Kul basin in Kyrgyzstan has a history of more than 120y of environmental observations. We combine hydrological & climatic data from historical archives with modern datasets & modelling tools to investigate climate impacts on the basin's water balance. In the 1st part of the study, we ...

• digitized, harmonized and, analysed historic data sources

• MATILDA combines the HBV model with a simple glacier melt model

• GloGEM is a global model for glacier mass balance & geometric evolution

- evaluated the suitability of ERA5-Land, CHELSA-W5E5, and CHIRPS precipitation products
- coupled the Workflow for Modelling Water Resources in Glacierized Catchments (MATILDA) with the Global Glacier Evolution Model (GloGEM)

Study Site

gauging stations

Issyk-Kul - "the hot lake"

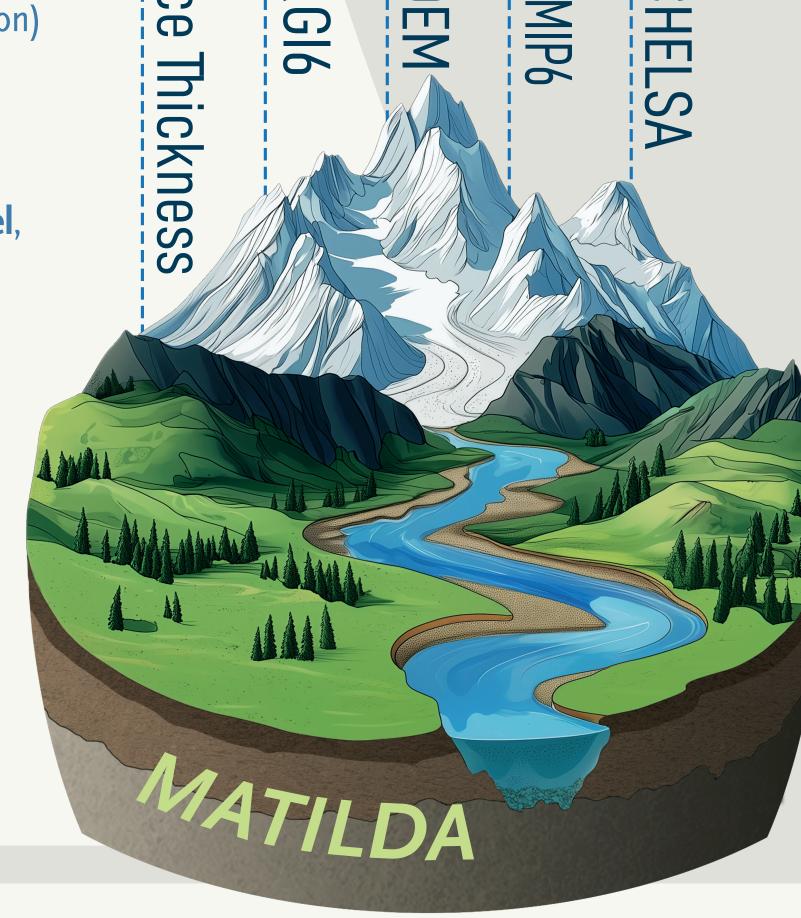
- worlds 2nd largest mountain lake
- Endorheic (closed) basin
- > 800 glaciers covering ~650 km²
- Surface area ~6,236 km², vol. ~1,738 km³;
 - Negative Climatic Water Balance (Annual lake surface evaporation ~700–820 mm)
- max. depth ~668 m
- 118 tributaries
 - 31 accessed discharge records (22 located)
 - Never freezes
 - (min. ~3-4 °C)

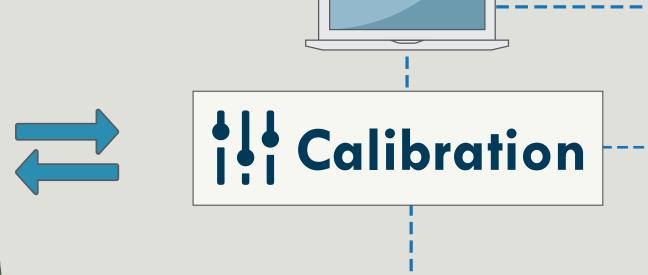
Why couple the models? Because GloGEM ...

- ... explicitly models all glaciers individually,
- ... calculates refreezing using a heat conduction model,
- ... calculates accumulation & melt per elevation band,
- ... explicitly models glacier length changes.

Disadvantages:

GLOOGEM


Higher computational costs


Model Setup

• GloGEM does not (yet) calibrate to snow reanalysis or discharge – MATILDA does!
Requires separate calibration of both routines!

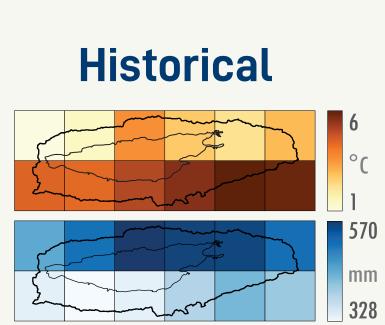
Study setup:

- Manual calibration of 3 catchments with long discharge records
- Matching shared parameters where possible
- Comparison of setups with and without GloGEM

<SWEETR>

Snow Reanalysis

Discharge Obs


Glacier Mass **Balance Obs**

Forcing & Calibration

- Calibration: CHELSA-W5E5 at 30 arcsec resolution (1979-2016) with warm-bias adjustment based on ERA5-Land
 - Projections: NEX-GDDP-CMIP6 (1979-2100) bias-adjusted based on CHELSA-W5E5
 - Glacier SMB: Annual Mean 2000-2010 from Hugonnet et.al. 2021
 - Snow: High Mountain Asia Daily Snow Reanalysis by Liu et.al. 2021
 - Discharge: Observations provided by Kyrgyz HydroMet

Results

Basin-wide Trends

SSP2 SSP5 mm/a 21st century

Glacier

21st Century

Vol.

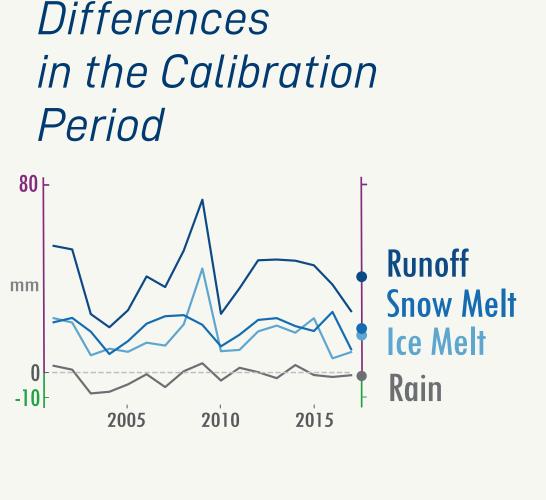
GloGEM

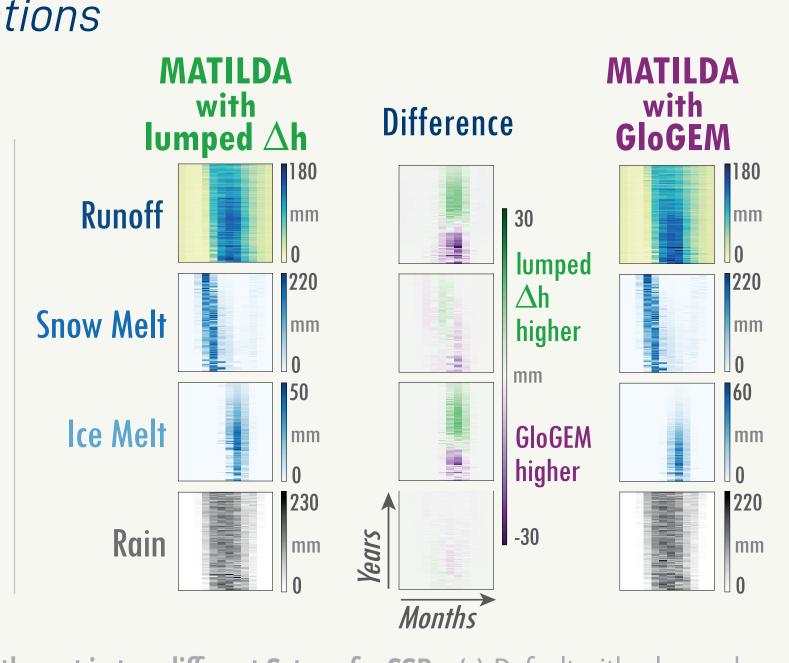
lumped Δ h

SSP2 SSP5

Take-Aways

Annual values aggregated to 0.6° grid cells.


Left: CHELSA means for 1979-2017. Right: Mean


anomalies for 2017-2040, 2041-2070, and 2071-2100

compared to the historical mean. Ensemble mean of 31

Model Comparison

Differences in the Projections

Glacier

21st Century

Area

Model Results from MATILDA for the Kyzylsuu cacthment in two different Setups for SSP5: (1) Default with a lumped Δh-based glacier routine & (2) coupled with GloGEM. Higher values for (1) are shown in green, and for (2) shown in purple. Models were forced with an ensemble of 5 bias-adjusted CMIP6 GCMs.

per-grid-cell anomalies, Temp. as basin-wide mean anomaly (circles). All temperature values are elevation corrected.

NEX-GDDP-CMIP6 members bias-adjusted with CHELSA. Prec. as

• The Issyk-Kul Basin has a negative Climatic Water Balance driven by high evaporation from the lake surface

- The northern mountain range is wetter, the southern range is warmer
- Projections see increases in both temperature & precipitation, with stronger precipitation increases in the south & east
- both setups model a similar decay of glacier volume, **GloGEM** reduces the glacier area quicker with higher melt rates
- this leads to more runoff in the first half of the century and less in the second
- The resulting ice distribution is more realistic
- Both scenarios lead to similar glacier responses due to increases in both - temperature and precipitation

• melt season starts earlier, general streamflow reduction

- calibrate the coupled workflow for all gauged catchments
- model ungauged catchments using regionalization with hydro-climatic predictors
- analyse the role of the cryosphere in the lakes water balance

Contact:

Website

phillip.schuster@geo.hu-berlin.de

¹ Geography Department, Humboldt-Universität zu Berlin ² Central Asian Institute for Applied Geosciences, Bishkek ³ Laboratory of Hydraulics, Hydrology & Glaciology (VAW), ETH Zurich References:

1. Schuster et,al. (2024). DOI: 10.5281/zenodo.14267418 2. ILEC – World Lake Database, https://wldb.ilec.or.jp/ Randolph Glacier Inventory v7,

10.1007/978-981-13-0929-8_9

6. Abuduwaili et.al. (2019), DOI: 10.4236/ns.2013.55076.

7. Huss & Hock (2015), DOI: 10.3389/feart.2015.00054

5. Kyrgyz National Water Resources Management

8. Liu et.al. (2021), DOI: 10.5194/tc-15-5261-2021

Project, https://nwrmp.water.gov.kg/

https://www.glims.org/RGI/ 4. Romanovsky et. Al. (2013), DOI: