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We randomize the installation of air purifiers across primary school classrooms to
reduce children’s exposure to air pollution. The intervention reduces indoor PM2.5

concentrations by 32% and decreases student absenteeism by 12.5%. We find larger
effects among students with higher pre-treatment absenteeism. The impact is also
greater when outdoor air pollution is relatively low and diminishes as outdoor pollu-
tion intensifies, consistent with non-linear marginal effects of air quality on health.
Treated students report fewer respiratory symptoms and exhibit greater awareness
of air quality. Each avoided absence day costs approximately AC11, yielding a con-
servative cost-benefit ratio of one-to-nine.
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1. Introduction

Air pollution is a global health issue contributing to child mortality and morbidity worldwide

(Institute for Health Metrics and Evaluation, 2019; Annesi-Maesano et al., 2021). High pollution-

related morbidity increases school absences (Currie et al., 2009), negatively impacting learning

outcomes and educational activities (Gershenson et al., 2017; Aguilar-Gomez et al., 2022). Al-

though average urban exposure has decreased in recent decades due to different pollution-control

measures, levels often exceed WHO guidelines (World Health Organization, 2021), leading to

significant health, economic, and welfare losses (Shaddick et al., 2020). Since traditional air

pollution control mechanisms, such as low-emission zones or industrial policies, can be costly

and complex to implement, temporary solutions are necessary to reduce exposure.

This study evaluates the efficacy and cost-effectiveness of installing portable air purifiers in school

classrooms. Our main hypothesis is that air purifiers improve indoor air quality and reduce

absenteeism by promoting children’s health. Using a cluster randomized controlled trial (RCT)

across five primary schools in Milan, Italy — an area known for poor air quality (EEA, 2022)

— we randomly assigned 95 classes to either receive or not receive air purifiers. Additionally,

we installed indoor air quality sensors in a subsample of classrooms to collect detailed data on

air pollution and environmental conditions.

Air purifiers reduce indoor air pollution by 32%. The relative efficacy of the purifiers does not

seem related to outdoor air pollution levels and remains rather stable throughout the study

period. The treatment decreases school absences by approximately 12.5% equivalent to about

1.3 fewer missed days per year. The effect is more pronounced for students with higher baseline

absenteeism. Dynamic treatment effects indicate that the reduction in absences primarily occurs

in fall and spring, rather than in winter when average pollution levels are significantly higher.

Supporting this observation, evidence shows that purifiers do not have statistically significant

effects on absences during periods of high outdoor air pollution. Specifically, the treatment effect

on absences is no longer significant when the ten-day rolling average of ambient PM2.5 exceeds

10 micrograms per cubic meter (µg/m3), or when more than two days in the past ten exceed the

WHO threshold of 15 µg/m3. These insights align with previous findings indicating that the

marginal effect of air pollution on health is concave, i.e., improving air quality when pollution is

relatively low has larger health effects than when pollution is high (Berkouwer and Dean, 2023;

Miller et al., 2024; Weichenthal et al., 2022; Corrigan et al., 2018; Pope III et al., 2015; Aragón

et al., 2017).



Using survey data, we find that treated students are less likely to report respiratory symptoms

over the past week compared to control students. This result suggests that reduced absences

likely arise from improved health. We also observe significant differences in students’ perceptions

of classroom air quality and their preferences for urban policies related to air quality. However,

we cannot rule out experimenter demand and priming effects. To examine the potential con-

founding role of behavioral changes in our results, we estimate the effect on proxies for opening

and closing classroom doors and windows (e.g., sudden shifts in temperature or carbon dioxide).

We find no evidence that purifiers significantly alter ventilation behavior or classroom occupancy

in response to the treatment, as indicated by the lack of differences in classroom CO2 levels,

temperature, and estimated ventilation episodes.

Cost-effectiveness calculations indicate that installing air purifiers leads to a cost per avoided

absence of AC10.6 and a lower bound rate of return 9.6 times greater than the intervention costs.

Related literature.

Air pollution is increasingly recognized as not only a health hazard but also a significant barrier

to educational success. Even low levels of ambient pollution negatively affect school participation

and learning across various contexts (Ebenstein et al., 2016; Carneiro et al., 2021; Sunyer et al.,

2017; Roth, 2021; Persico and Venator, 2019; Gilraine and Zheng, 2022; Chiu et al., 2013; Rahai

and Evans, 2023; Heyes et al., 2023; Lai et al., 2021; Yao et al., 2023). Polluted air harms

children’s health and cognitive function (Nauze and Severnini, 2021; Künn et al., 2019), leading

to lower attendance and academic performance (Chen et al., 2018; Currie et al., 2009; Komisarow

and Pakhtigian, 2022; Ransom and Pope, 1992; Persico and Venator, 2019; Heissel et al., 2022).

This issue is critical, as educational outcomes have long-term implications for human capital

formation, productivity, and lifetime earnings (Graff Zivin and Neidell, 2013a). Notably, the

adverse effects are especially pronounced among vulnerable children with pre-existing health

issues or higher baseline absenteeism (Liu and Salvo, 2018). Our paper builds on this literature

by providing the first experimental evidence of the causal impact of indoor air purifiers on

student absenteeism. This design addresses many common confounders in observational studies

and expands the literature into a developed country setting with moderate to high ambient

pollution levels. In doing so, our work corroborates the negative educational effects of air

pollution.

Within education policy, cost-effectiveness is crucial for resource allocation. Policymakers must

choose from various interventions to maximize educational gains. Many traditional interventions



to improve educational outcomes require substantial investments, yet their cost-effectiveness

varies widely (Angrist et al., 2020). Among programs to reduce absenteeism, behavioral inter-

ventions informing parents about their child’s attendance proved highly cost-effective (Rogers

and Feller, 2018; Robinson et al., 2018). However, few studies have assessed the cost-effectiveness

of specific interventions to improve the physical learning environment and the quality of indoor

air, in particular.1 Some epidemiological studies highlight the benefits of air purifiers on re-

ducing indoor pollution in schools (Carmona et al., 2022; Tong et al., 2020) and associated

significant health benefits (Chen et al., 2015; Yang et al., 2021).Closer to our study, Gilraine

(2023) find that installing air filters in schools leads to a 0.1 to 0.2 standard deviation increase

in test scores, utilizing a regression discontinuity design.2 Our experimental analysis looks at

absenteeism, an important economic outcome with long-term consequences. The intervention

costs approximately AC11 per avoided absence day, making it a cost-effective alternative to more

expensive educational initiatives. This clear benefit-cost analysis underscores the potential of

indoor air purification as a viable educational policy tool.

Finally, we contribute to the literature on adaptation to environmental stressors and the role of

exposure to indoor air pollution (Graff Zivin and Neidell, 2013b; Deschênes et al., 2017; Park

et al., 2020; Burke et al., 2022; Coury et al., 2024; Barwick et al., 2024). As environmental

stressors increasingly challenge public health and productivity, adaptive responses are essential

to mitigate the negative effects of environmental hazards and minimize adverse outcomes. Stud-

ies indicate that households and firms invest in protective technologies, such as air conditioners

during heat waves or air filters and masks during heavy smog, to reduce personal exposure (De-

schênes et al., 2017; Ito and Zhang, 2019b; Greenstone et al., 2021b; Zhang and Mu, 2018; Baylis

et al., 2024; Metcalfe and Roth, 2025). Additionally, evidence from developing countries shows

that real-time air quality information encourages the adoption of mitigation measures, although

these responses often vary by socioeconomic status (Ito and Zhang, 2019a; Greenstone et al.,

2021a; Zhang and Mu, 2018). While adaptation does not replace pollution control, it serves

as a crucial secondary defense mechanism, especially when complete hazard elimination is un-

feasible. Nonetheless, research indicates that adaptive measures have limitations; for instance,

when outdoor pollution reaches extreme levels, the protective behaviors may not be sufficient

to mitigate the health risks (Burke et al., 2022; Barwick et al., 2024). Our study contributes to

1Impact assessments of general school infrastructural investments are provided, for instance, in Cellini et al.
(2010). The benefits of air conditioning for learning are studied in Park et al. (2020).

2In an RCT, Gignac et al. (2021) find no short-term effect of purifiers on adolescent attention. Several RCTs
are underway on the impact of air purifiers on schooling outcomes across different contexts and in conjunction
with other interventions (Liu et al., 2024; Malik et al., 2024; Ruiz-Tagle and Sangwan, 2023; Kremer et al.,
2023).



the adaptation literature by empirically testing an indoor air quality improvement technology

as an adaptive strategy in schools. Our design allows us to quantify how effectively air purifiers

can shield students from poor ambient conditions. The results show that while the interven-

tion significantly reduces student absences during moderate pollution periods, its effectiveness

diminishes under severe outdoor pollution. This finding highlights an important boundary con-

dition for adaptive interventions and suggests that such measures should complement broader

pollution abatement policies.

2. Experimental design

Context: Northern Italy features high population density and economic activity, along with

poor orographic conditions that impede air circulation. This combination makes it one of the

most polluted regions in Europe.3

State-owned schools dominate Italy’s educational landscape, with approximately 94% of chil-

dren enrolled in public institutions (Ministero Italiano dell’Istruzione e del Merito, 2023). The

average Italian school buildings are over 50 years old and often do not meet current sustainability

standards. Some classrooms exhibit inadequate maintenance, and environmental improvements

occur infrequently (Ruggieri et al., 2019). Most schools were constructed before urban develop-

ment, resulting in their proximity to high-traffic roads, which significantly increases exposure to

air pollution.

In the Italian school system, at the beginning of the year, students are assigned to a single

classroom where they spend most of their day. They leave daily for lunch at the school canteen

and can visit the garden or courtyard during breaks.4 The choice between spending breaks

indoors vs. outdoors depends on the weather and teachers’ preferences. Teachers may teach

multiple classes and move between different physical classrooms throughout the day.

Intervention and randomization: Our intervention installed 43 consumer-grade portable

air purifiers in randomly selected classrooms across five schools. We assigned classrooms to

treatment and control groups, stratifying by school and grade. All purifiers were installed outside

school hours in early November 2023. The intervention did not include targeted information

campaigns or communications to teachers or parents. All purifiers operated continuously from

November 2023 to June 2024. The research team monitored purifier functionality through

3More information is provided in Appendix B.
4Students spend a few hours per week attending lab sessions in specialized classrooms and exercising in the
school gym.



monthly statistical analyses of indoor air pollution data in a subsample of classrooms and bi-

monthly on-site visits.

We installed NETCO NIVEUS NV100 air purifiers equipped with U15 Ultra Low Particulate

Air (ULPA) filters, capable of capturing up to 99.99% of particles larger than 0.026 microns—the

highest efficiency in mechanical filtration technology. These devices are energy-efficient, with

power consumption comparable to a 60-watt incandescent bulb, and operate quietly, producing

sound levels between 29 and 45 dB(A). Following the manufacturer’s guidelines, we selected the

model based on the average classroom volume. Purifiers operated at 60% capacity to ensure

effective air purification with minimal noise, achieving an average Air Exchange Rate of 1.04.

In addition to the purifiers, we randomly installed 31 indoor air quality sensors in a subsample

of classrooms.5 Sensors’ installations were stratified by school, treatment status, and grade

to ensure balanced representation across treatment and control groups. The sensors measure

concentrations of PM2.5, PM10, carbon dioxide (CO2), carbon monoxide (CO), as well as

temperature, humidity, and atmospheric pressure. Once powered and connected to the internet,

the sensors transmit data every 30 seconds to an online data platform.

Teachers administered paper-and-pencil surveys to students at two time points: before the in-

tervention in October 2023 and after the intervention in April 2024. Teachers selected survey

administration dates within a two-week window based on availability. To improve comprehen-

sion, we used capital letters and visual Likert scales with emoticons. First-grade teachers adhered

to a dedicated protocol, projecting and reading each question aloud to support student under-

standing. Participation was optional for first-grade students. The survey took approximately

15 minutes to complete.6

2.1. Sample, Data and Outcome Variables

Sample: The study sample includes students from the 2023–24 school year, with absence and

demographic data obtained from official school ledgers and registries. It comprises 95 classes

and 2,050 students across five grades. Data on indoor environmental conditions were collected

using 31 air quality sensors; one sensor was excluded from the analysis after data quality checks

(see Appendix D for details).

The survey completion rate is approximately 88%, with 1,822 responses in the first wave and

5Appendix C provides technical details on the purifiers and monitors.
6The English translation of the survey is available at https://drive.google.com/file/d/

1xxGPG3gAREeUooPk4cVDqA3LYQSJ1pH5/view?usp=sharing.



1,815 in the second. This rate is primarily explained by two factors. (1) Many schools chose

not to administer the survey to first-grade students in either wave, and (2) student absences on

the survey day. Appendix Tables A.1 and A.2 show that survey participation rates do not differ

significantly between treatment and control groups.

Indoor air quality: We aggregate air pollution concentration data from monitors into daily

averages, using measurements recorded between 8:00 AM and 5:00 PM to align with class hours.

To assess the potential impact of measurement error on the evaluation, we co-located all sensors

in a single space for four consecutive days. Overall, we find no evidence that measurement

imprecision in indoor variables differs systematically between treatment and control classrooms.7

Absenteeism: Schools collected daily absence data digitally and shared it with researchers in

anonymized form at the end of the 2023–24 school year. However, the reasons for student ab-

sences are neither systematically recorded nor digitized, preventing us from identifying whether

health-related issues are the primary cause. Our outcome variable for absenteeism is a binary

indicator equal to one if a student is absent on a given day, and zero otherwise.

Subjective health symptoms: We use students’ self-reported symptoms as a proxy for health

conditions. Children reported the frequency of various respiratory and non-respiratory symp-

toms experienced over the past week using a four-point Likert scale: never, sometimes, often,

and every day.8 The symptoms include: runny nose, blocked nose, sneezing, cough, shortness

of breath, tiredness, headache, and stomachache. We classify the first four symptoms as respi-

ratory, the last two as non-respiratory (placebo), and the remaining two as general. For each

symptom, we create a binary indicator equal to one if the student reported experiencing it at

least ”sometimes,” and zero if they selected ”never.”

Perceptions, Beliefs, and Behavioral responses: The intervention did not include explicit

communication or awareness campaigns about indoor air quality or environmental issues; how-

ever, it may have implicitly raised environmental awareness. We assess perceptions of air quality

across different settings (overall, city, classroom, and courtyard) using a four-point Likert scale:

very bad, bad, good, and very good. Responses received a score from 1 to 4. We also evaluated

children’s views on the importance of addressing urban challenges such as street garbage, lack

of green areas or playgrounds, insufficient sports facilities, air pollution, and road traffic. These

were rated on a four-point Likert scale: to a great extent, to some extent, to a limited extent,

7Details are in Appendix D.
8These questions are adapted from a validated survey on acute respiratory illnesses for children aged 4 to 10,
developed by Schmit et al. (2021).



and not at all, and similarly coded as a score from 1 to 4.9

To measure teachers’ behavioral responses to the purifiers, we monitored indoor environmental

conditions—specifically CO2 levels, temperature, and the frequency of window openings. These

parameters are influenced by classroom occupancy and ventilation, but are not directly affected

by the purifiers. We calculated daily averages of CO2 and temperature using data from the

air quality sensors. We identified ventilation episodes with sharp drops in CO2 levels alongside

increases in PM2.5. Further details are provided in Appendix E.

Controls and dimensions of heterogeneity: We obtained students’ socio-demographic in-

formation from school administrative records, focusing specifically on gender and nationality.

We created a binary variable, assigning a value of one for female students and zero for male

students, along with a binary indicator for foreign citizenship.10

Outdoor air pollution: We used outdoor pollution data from the European Environmental

Agency (EEA) database (EEA, 2024). We calculated daily average PM2.5 levels for each school

by applying inverse distance weighting from the two nearest background air quality monitoring

stations.

3. Descriptive Statistics

3.1. Sample characteristics and balance

Table 1 presents descriptive statistics for the student sample. Overall, 47% of students are

female, and 37% have foreign citizenship. The distribution across the five grades is relatively

balanced. In the pre-treatment period, students were absent for approximately 4.6% of school

days, averaging about nine missed days in a standard 200-day school year.

At baseline, between 46% and 62% of students reported experiencing runny nose, blocked nose,

sneezing, cough, or shortness of breath in the previous week, 61% reported tiredness, 48%

headaches, and 42% stomach aches. Perceptions of air quality averaged 3.1 on a 1-to-5 scale,

with lower ratings for city air quality (2.7) and higher ratings for classrooms (3.2). Students

regarded outdoor school spaces, such as courtyards, as safer in terms of air quality (3.5) compared

to the broader urban environment (2.7). Regarding urban priorities, students emphasized city

cleanliness and air quality (both around 3.5), followed by green areas, playgrounds, traffic (3.2),

9This block of questions was inspired by the scales used in Cori et al. (2020).
10Under Italian law, children born in Italy to non-Italian parents acquire Italian citizenship at the age of 18.



and sports infrastructure (3.1). Administrative and survey-based measures show no significant

differences between treatment and control groups (see Columns 4–5).

Survey measures are affected by missing data at both baseline and endline. Appendix Tables

A.1 and A.2 present the extent of missingness and test for correlations with treatment status.

At baseline, approximately one-quarter of students—and 13–15% at endline—did not respond

to health-related questions. Non-response rates for items on air quality perceptions and policy

preferences ranged from 15% to 18% at baseline and from 4% to 6% at endline. We find no

evidence of differential missingness by treatment status at either time point.

4. Empirical strategy and results

Our empirical strategy leverages the random assignment of air purifiers across classrooms. Iden-

tification relies on the assumption that treated and control students are comparable in both ob-

servable and unobservable characteristics. We also assume that control students do not receive

indirect benefits from the treatment or change their behavior due to the absence of purifiers. We

discuss potential threats to these assumptions in Section 4.3. Most analyses were pre-registered,

and deviations from the Pre-Analysis Plan (PAP) are detailed in Appendix F.

4.1. Impact on indoor air quality

We assess the impact of air purifiers on indoor air quality using Equation 1, where Yct represents

the indoor air quality measure in classroom c on day t; AirPurifierc indicates whether the

classroom received a purifier.11 We include time fixed effects (λt) for calendar day, school-

by-weekday, and school-by-month. Calendar day fixed effects capture daily pollution shocks

affecting all schools. School-by-weekday and school-by-month interactions control for location-

specific seasonal factors, such as school events, that may influence air quality. We also control

for grade fixed effects, Xc, to account for the stratified randomization procedure (Bruhn and

McKenzie, 2009).

Yct = α+ βAirPurifierc + γXc + λt + εct (1)

Table 2 presents the treatment effects on PM2.5 and PM10 (Panel A, Columns 1-2). Purifiers

significantly reduce concentrations by approximately 4.5 µg/m3, which corresponds to a 32%

11We do not have pre-treatment measurements, as air quality monitors and purifiers were installed simultaneously.



reduction compared to control classes. As expected, we observe no effects on CO since air

purifiers do not target this pollutant. To focus on student impacts, we limit the sample to

school days; however, results remain consistent when including non-school days (see Appendix

Table A.3).

Panel B presents the dynamic treatment effects, with each coefficient capturing the monthly

impact of the intervention. The absolute difference in PM2.5 concentrations between treated and

control classrooms is largest during the winter months, at 7.9 in February and 6.2 in January.

In contrast, the absolute differences in April and June are smaller, at 1.7 and 2.1 µg/m3,

respectively. Although the absolute differences are greater in winter, the relative reduction

does not seem to correlate with outdoor air pollution. At its peak, the reduction reached

approximately 39.2% in May. However, sustained levels above 32% are found from November

to June, with a slight dip in December and January.

Indoor air pollution levels appear to be influenced by several factors: outdoor pollution levels, the

indoor/outdoor (I/O) ratio, which indicates the extent of PM2.5 penetration, and the presence of

air purifiers. Outdoor PM2.5 concentrations exceeded the WHO daily limit of 15 µg/m3 on 48%

of days during the study period. The I/O ratio ranged from 55.8% to 121% (with a weighted

average of 0.64%), typically decreasing in winter due to reduced ventilation. Consequently,

indoor PM2.5 levels in control classrooms exceeded the WHO threshold on 28.2% of days. This

percentage drops to 18.7% in treated classrooms, reflecting the purifiers’ mitigating effect.

4.2. Impact on absences

We test the impact of air purifiers on absences using:

Absentict = β1AirPurifierc ∗ Postt + λi + λt + εict (2)

In this equation, Absentict is a binary variable equal to one if student i in class c is absent

on date t, and zero otherwise. AirPurifierc indicates whether class c received an air purifier,

while Postt equals one for dates after the purifiers were installed on November 8, 2023. The

model includes student fixed effects (λi) to control for time-invariant individual characteristics.

To address unobserved temporal heterogeneity across days, schools, and seasons, we include

calendar date, school-by-weekday, and school-by-month fixed effects (λt). We cluster standard

errors at the treatment level to account for within-class correlation in absences, following Abadie



et al. (2023). We estimate Equation 2 using a Probit Maximum Likelihood Estimator.

Air purifiers reduce concentrations of various airborne substances that can affect respiratory

health, such as pollen and viruses. Thus, we cannot use the random installation of purifiers

as an instrumental variable for PM2.5, as it likely violates the exclusion restriction. Also note

that purifiers may introduce unintended effects beyond reducing the concentration of airborne

particles, such as noise or light emissions. To mitigate these risks, we turned off all indicator

lights and operated the purifiers at reduced speeds, maintaining noise levels within the WHO-

recommended threshold for classrooms (35 dB(A)).

Panel A of Table 3 shows that purifiers reduce absences by approximately 0.7 percentage points

(Column 1), equivalent to about 12.5% of post-treatment absences in the control group or 0.03

standard deviations. This result is significant at the 10% level.12 Panel A reports heteroge-

neous treatment effects by pre-treatment absence levels (Columns 2–5). We interact Postt and

AirPurifierc × Postt with quartiles of the pre-treatment absence distribution. The point es-

timates indicate that the treatment effect strengthens with higher baseline absence levels. In

particular, the interaction term for the fourth quartile is negative and statistically significant at

the 10% level.13 Two potential mechanisms may explain this pattern. First, students who are

more fragile or vulnerable may benefit disproportionately from improved air quality, resulting

in fewer illnesses and, consequently, reduced absenteeism. Second, while purifiers may produce

uniform health improvements across students, families with more health-sensitive children may

be more likely to respond to symptoms by keeping them at home. Although the first mechanism

is more strongly supported in the literature (Currie et al., 2009; Mendoza et al., 2020), the

research design does not allow us to distinguish between the two channels.

We examine whether treatment effects vary based on students’ socio-demographic characteris-

tics, including gender and citizenship (Columns 6–9). There is no evidence of differential effects

by gender. However, we find suggestive evidence that the treatment is more effective for stu-

dents with foreign citizenship (p-value = 0.102), who tend to have higher pre-treatment absence

rates. For instance, the average number of pre-treatment absences among Italian students is

approximately 25% lower than that of foreign students. Additionally, we explore heterogeneity

by grade level and find no significant differences (Appendix Table A.5).

The right panel of Figure 1 presents dynamic treatment effects on absences by month. The

12The results remain qualitatively consistent when using linear probability models (p − value = 0.131), Poisson
and Zero-Inflated Poisson (ZIP) models at the classroom level (p − value = 0.093 and p − value = 0.034,
respectively), as reported in Appendix Table A.4.

13Results remain consistent when using a continuous measure of pre-treatment absences (Appendix Table A.5).



treatment effect is statistically significant or borderline significant in November, April, May,

and June, but not during the winter months (December, January, and February), when outdoor

pollution levels peak. The left panel displays the seasonality of absences in the control group.

The seasonal pattern of treatment effects does not appear to result from seasonal trends in

absenteeism.

We examine heterogeneous treatment effects by outdoor air pollution levels in Panel B of Table 3.

We compute the 10-day rolling average of outdoor PM2.5 concentrations and count the number

of days exceeding the WHO’s daily threshold of 15 µg/m3 within that period. From these

metrics, we create indicator variables for the quartiles of both the number of exceedance days

and the rolling average. Columns 1–4 and 5–8 present results, using the lowest quartile as the

reference group for each specification. Both exceedance counts and pollution averages show

that air purifiers significantly reduce absences in the lowest quartile. The effects in the second

and third quartiles do not significantly differ from the first quartile, but the effects in the fourth

quartile are significantly smaller. In both specifications, treatment effects in the third and fourth

quartiles are not statistically distinguishable from zero, indicating that purifiers lose effectiveness

at high outdoor pollution levels. We further explore this relationship using a linear interaction

model to estimate the pollution threshold at which the treatment effect becomes statistically

indistinguishable from zero (Appendix Table A.6). The results indicate that when the ten-day

rolling average of PM2.5 exceeds approximately 10 µg/m3, or when more than two days in the

previous ten exceed the 15 µg/m3 threshold, the impact of purifiers on absences is no longer

statistically significant.14 In the study context, these situations occur in 65% and 58% of school

days, respectively.

4.3. Impact on self-reported health symptoms, perceptions, preferences, and

behaviors

We assess the intervention’s impact on self-reported health symptoms, perceptions of air quality

in different environments, and preferences for various urban policies. For binary outcomes,

we use Probit models, while for ordinal outcomes (e.g., perception and preference scores), we

use Ordered Probit models. Each endline outcome is regressed on a treatment indicator and

a vector of student characteristics, including gender, citizenship, and grade, along with school

fixed effects. We cluster standard errors at the classroom level.

14We calculate this value by estimating the X value for which the following expression holds true:
Abs

∣∣βtr +
(
αtr · Φ−1(0.95)

)∣∣ <
[
βinter +

(
αinter · Φ−1(0.95)

)]
× X. In it, βtr and αtr is the estimate and

standard error of the treatment effect. βinter and αinter the counterparts from the linear interaction model.
We multiply both by its 90% confidence interval Φ−1(0.95).



Table 4 reports the estimated effects on self-reported health symptoms. We observe negative

treatment effects for respiratory-related symptoms, with statistically significant reductions in the

incidence of runny nose and blocked nose at the 10% level. The effect sizes for these symptoms

range from 4.6 to 5.9 percentage points, indicating decreases of approximately 9% and 11%

relative to the control group mean. Columns 6 to 8 show no significant effects for general or

unrelated (placebo) symptoms. These results provide suggestive evidence that the treatment

operates through improvements in respiratory health.

We investigate how classroom air purifiers affect students’ perceptions of air quality in different

environments. Panel B of Table 4 shows that students in treated classrooms report significantly

higher perceptions of air quality than students in control classrooms. In contrast, we find no

significant differences in perceptions of overall city air quality or the schoolyard (Columns 1–4).

Moreover, the treatment significantly increased priority scores for green policies, including city

cleaning, green playgrounds, and air quality. However, the effect is statistically significant only

for air quality (Columns 5-9).

Changes in classroom air quality perception may prompt behavioral adaptations. Students and

teachers in treated classrooms might modify ventilation practices, such as reducing the frequency

of window openings, or alter decisions about classroom occupancy. These behavioral responses

could compromise the study’s identification strategy if indoor pollution levels correlate with

treatment status, leading to conflated treatment effect estimates that mix the direct impact of

purifiers with the effects of behavioral adaptation. To assess potential behavioral adaptation, we

compare average daily levels of indoor CO2, temperature, and estimated window-opening events

between treatment and control classrooms, using a specification similar to Equation 1. These

variables depend on student density, class duration, and ventilation frequency. As shown in

Panel A of Table 2 (Columns 4–6), we observe no significant differences in these environmental

measures between the treatment and control groups. Since window-opening behavior may vary

seasonally, we also test whether treatment affects ventilation patterns across seasons. We find no

significant relationship between treatment status and window-opening frequency, either overall

or by season (Appendix E).

Due to data and power limitations, we cannot assess the impact of air purifiers on academic

achievement. Furthermore, we observe no significant effects of the intervention on cognitive

skills, mood, or aggressive behavior—three pre-specified, survey-based outcomes. We present

and discuss these results in detail in Appendix Section F.



5. Discussion

Significant improvements in indoor air quality (-32% in PM2.5) resulted in 1.34 fewer missed

days per student annually. In comparison, Komisarow and Pakhtigian (2022) report a smaller

reduction of 0.66 missed days per student each year following the closure of three coal-fired

power plants in Chicago. Similarly, Chen et al. (2018) find that in China, a 10-unit increase in

the Air Quality Index (AQI) raises the total absence rate by approximately 2.31% of the daily

mean. In Texas, Currie et al. (2009) indicate that high levels of outdoor carbon monoxide (CO)

significantly reduce school attendance. Persico and Venator (2019) find that the opening of Toxic

Release Inventory sites near schools in the U.S. is associated with 0.6 fewer annual absences per

student, while Heissel et al. (2022) show that relocating upwind of major highways in Florida

reduces yearly absences by 0.82 days. The effect of air purifiers is especially pronounced among

those with higher baseline absence rates, reinforcing existing evidence on the unequal burden of

air pollution (Liu and Salvo, 2018).

We observe seasonal effects of purifiers on absences: absences decrease in November, April,

May, and June, showing borderline significant or significant reductions. However, we find no

significant decrease in absences in December, January, and February, when outdoor pollution

levels peak. This pattern aligns with a concave relationship between air quality and health

outcomes. Reducing pollution from very high to moderately high levels yields limited health

benefits, as both levels remain above the recommended ”healthy” exposure thresholds. Our

results support prior evidence on non-linear relationships between air pollution and morbidity.

For instance, Berkouwer and Dean (2023) find no clinical health improvements after installing

clean stoves in rural households in India because average pollution exposure remains high due

to significant outdoor levels. Similarly, Miller et al. (2024) show that health impacts rise steeply

when transitioning from small to medium smoke shocks but flatten and slightly decline from

medium to large shocks.

Another possible explanation for the dynamic effects relates to absenteeism caused by allergic

respiratory symptoms in spring. During this season, purifiers may improve indoor air quality by

reducing high concentrations of dust, allergens, and pollen. To test this hypothesis, we estimate

heterogeneous treatment effects based on pollen concentration, using a 10-day rolling average.

Following the approach in Panel B of Table 3, we find no evidence that the effectiveness of

purifiers varies with pollen levels (Appendix Table A.7). This finding reduces the likelihood

that our dynamic treatment effect arises from purifiers’ impact on pollen.



We find that purifiers reduce students’ self-reported respiratory symptoms and influence their

perceptions of air quality and preferences for urban policies aimed at reducing pollution. How-

ever, one limitation is the potential for experimenter demand effects—treated students may

feel pressured to report symptoms, perceptions, and preferences that align with the perceived

goals of the intervention. Additionally, the physical presence of purifiers may prime students’

responses. To support the validity of self-reported health measures, we examine their correla-

tion with pre-treatment absences. We find a positive and statistically significant relationship

between baseline reports of runny nose and blocked nose and pre-treatment absences (Appendix

Table A.8).

5.1. Cost-effectiveness

We assess the cost-effectiveness of our intervention by calculating the cost per avoided student

absence. The total cost is approximately AC3,070 per purifier over a 10-year lifespan, which

includes purchase, maintenance, and energy use.15 In a typical classroom with 21.6 students, this

results in an annual cost of about AC14.20 per student. Since the intervention reduces absences

by approximately 1.34 days per student per year, the estimated cost per avoided absence day is

AC10.60.

In high-income contexts, interventions designed to reduce absenteeism among at-risk students

often include mentorship programs and behaviorally informed attendance reports sent to parents

(Rogers and Feller, 2018; Heppen et al., 2018; Robinson et al., 2018; Bergman, 2021). In lower-

income settings, deworming is considered one of the most cost-effective strategies for improving

both attendance and academic outcomes (Miguel and Kremer, 2001). The cost per additional

day of attendance varies widely across interventions—from approximately AC7.10 for deworming

to AC9–15 for behavioral interventions that reduce information frictions, and over €580 for hiring

dedicated support staff.16 Our intervention falls at the lower end of this cost range. Additionally,

unlike information-based treatments, air purifiers are likely to produce lasting effects without

behavioral mean reversion or externalities.

The benefits of our intervention significantly exceed its costs when considering the broader

economic impacts of school absences. Extensive research shows that missed school days adversely

affect both short-term academic performance and long-term earnings potential (Liu et al., 2021;

Cattan et al., 2022; Goodman, 2014). Using a health-cost framework, Federici et al. (2018)

15This includes a bulk purchase price of AC2,000, three replacement filters at AC250 each (every 3 years), and AC320
in electricity costs (assuming 0.8 KW/h per day over 2,000 days at the current Italian price of AC0.20/KWh).

16Original cost values were converted to euros and adjusted for inflation to ensure comparability in 2024.



estimate the societal cost of a single school day missed due to influenza-related illness in Italy at

approximately AC102, which includes costs related to childcare, lost parental productivity, and

healthcare expenditures. Based on this estimate, our intervention results in a benefit-cost ratio

of 9.62 when considering only the immediate economic costs of absenteeism.

6. Conclusion

In this paper, we evaluate the impact of installing portable air purifiers in schools. The study

occurs in a developed region characterized by moderate ambient pollution and standard school

infrastructure. Our findings indicate that air purifiers effectively lower indoor pollution and

decrease student absenteeism, especially among the most vulnerable students. The intervention

proves to be cost-effective, scalable, and easily replicable.

The effects are most pronounced during periods of moderate outdoor pollution. During high-

pollution episodes, the reduction in PM2.5 achieved by purifiers is insufficient, as students remain

exposed to elevated pollution levels both indoors and outdoors. This indicates that in areas with

severe air pollution, purifiers alone may not significantly improve health outcomes or reduce

absences. Improving indoor air quality in such contexts may require reducing infiltration through

better infrastructure or increasing the capacity and operational speed of purifiers. Furthermore,

using air purifiers should complement—not replace—broader efforts to reduce emissions, raise

awareness, and promote adaptive behaviors.

This study presents the first experimental evidence on the effect of air purifiers on absenteeism

among primary school students and establishes a conservative estimate of their cost-effectiveness.

Future research should examine the impact on academic achievement across various educational

levels and assess potential effects on teachers to quantify the intervention’s benefits more com-

prehensively.



Tables and Figures

Table 1: Descriptive statistics and balance

(1) (2) (3) (4) (5)
Obs Control ATE

Variable Mean (SD) Estimate (SE)

Female 2051 0.469 0.499 0.002 0.016
Grade 1 2051 0.184 0.388 0.016 0.081
Grade 2 2051 0.215 0.411 -0.020 0.086
Grade 3 2051 0.209 0.407 -0.017 0.085
Grade 4 2051 0.195 0.396 -0.012 0.081
Grade 5 2051 0.197 0.398 0.033 0.087
Foreign citizenship 2051 0.369 0.483 0.025 0.020
Pre-treat absences 2049 0.046 0.074 0.004 0.004
Class size 95 21.58 2.57 0.196 0.414
Some symptoms: runny nose 1451 0.456 0.498 -0.008 0.040
Some symptoms: blocked nose 1437 0.541 0.499 -0.001 0.039
Some symptoms: sneezing 1430 0.620 0.486 0.007 0.038
Some symptoms: cough 1433 0.556 0.497 0.030 0.038
Some symptoms: short of breath 1375 0.249 0.433 -0.004 0.033
Some symptoms: tiredness 1397 0.615 0.487 -0.002 0.039
Some symptoms: headache 1405 0.482 0.500 -0.039 0.035
Some symptoms: stomach ache 1389 0.424 0.494 -0.057 0.037
AQ perception: overall 1557 3.091 0.850 -0.036 0.092
AQ perception: city 1554 2.716 0.954 -0.142 0.089
AQ perception: class 1553 3.230 0.747 -0.036 0.059
AQ perception: schoolyard 1551 3.513 0.680 -0.112 0.059
Priority policy score: cleaning 1559 3.467 0.900 -0.014 0.067
Priority policy score: green and playgrounds 1540 3.278 0.982 -0.004 0.083
Priority policy score: sport infrastructures 1525 3.098 1.087 -0.105 0.099
Priority policy score: air quality 1536 3.486 0.955 -0.061 0.068
Priority policy score: less traffic 1513 3.169 0.997 -0.061 0.081

Notes: The table presents the mean and standard deviation in the control group (columns 2-3) for student socio-
demographic characteristics and survey variables at the baseline, and the treatment effect with its standard error (columns
4-5). Air Quality (AQ) perception indexes are expressed on a scale from 1 (very bad) to 4 (very good). Priority policy
scores are expressed on a scale from 1 (not important at all) to 4 (very important).



Table 2: Average and dynamic treatment effects on indoor air quality and environmental
variables

Panel A: Average treatment effects on indoor environmental variables

(1) (2) (3) (4) (5) (6)
Indoor air quality Other environmental variables

PM2.5 PM10 CO CO2 Temp.
N. Ventilation

episodes

Estimate -4.489∗∗∗ -4.595∗∗∗ -0.1731 30.53 -0.1666 0.148
(0.5206) (0.5807) (0.2933) (69.07) (0.2803) (0.240)

N.Obs 3,417 3,417 3,417 3,417 3,417 3,422
Control Mean 14.15 14.85 1.31 805.9 20.97 1.4
Rel. Change % 31.72 30.94 13.25 3.79 0.79 −10.6

Panel B: Dynamic treatment effects on indoor PM2.5

(1) (2) (3) (4) (5) (6) (7) (8)
11-2023 12-2023 01-2024 02-2024 03-2024 04-2024 05-2024 06-2024

Estimate -3.819∗∗∗ -4.397∗∗∗ -6.178∗∗∗ -7.947∗∗∗ -2.952∗∗∗ -1.686∗∗∗ -2.308∗∗∗ -2.119∗∗∗

(0.5814) (0.9762) (0.9354) (0.9306) (0.4362) (0.2231) (0.3509) (0.5275)

N.Obs 515 712 797 751 847 819 820 186
Control Mean 11.59 18.24 21.64 21.39 8.03 5.12 5.88 5.84
Treated Mean 7.70 13.84 15.46 13.93 5.11 3.45 3.59 3.63
Outdoor Mean 18.53 26.33 32.92 35.21 13.30 8.60 6.98 4.48
Rel. Change % -32.95 -24.11 -28.54 -37.16 -36.78 -32.94 -39.24 -36.27
I/O Ratio 0.625 0.693 0.657 0.607 0.604 0.595 0.843 1.304

Notes: Panel A reports the average treatment effects (ATE) on indoor air quality measures (PM2.5, PM10, CO) alongside
effects on other environmental variables (CO2 and temperature) and the number of ventilation episodes. The sample is
restricted to school days. Panel B presents the dynamic treatment effects on indoor PM2.5 by calendar month. Due to some
missing observations at the sub-daily level, the sample size is slightly different in Column (6). All models include calendar
date, day of the week, school-by-weekday, school-by-month, and grade fixed effects. Standard errors are clustered at the
treatment (classroom) level. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.



Table 3: Main and heterogenous effects on school absences

Panel A: Average treatment effects and heterogeneity

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Main effect Pre-treat absences Student characteristics

Q1 Tr×Q2 Tr×Q3 Tr×Q4 Male Tr×Female Italian Tr×Foreign

Estimate −0.064∗ 0.004 −0.024 −0.028 −0.103∗ −0.108∗∗ 0.099 −0.013 −0.123
(0.038) (0.007) (0.052) (0.054) (0.061) (0.050) (0.081) (0.044) (0.075)

N.Obs 336,716 335,861 335,861 335,861 335,861 336,716 336,716 336,716 336,716
Marginal Effect −0.007 0.0004 -0.0025 -0.0028 -0.0109 −0.006 −0.001 −0.002 −0.015
Control Mean 0.056 0.044 0.056 0.059 0.101 0.062 0.060 0.058 0.067

Panel B: Heterogeneity by outdoor air pollution:

(1) (2) (3) (4) (5) (6) (7) (8)
WHO exceedances in the last ten days Ten days rolling average of PM2.5

Q1 Tr×Q2 Tr×Q3 Tr×Q4 Q1 Tr×Q2 Tr×Q3 Tr×Q4

Estimate −0.106∗∗ 0.029 0.050 0.087∗∗ −0.097∗∗ 0.003 0.043 0.079∗∗

(0.042) (0.036) (0.040) (0.040) (0.042) (0.036) (0.043) (0.039)

N.Obs 336,716 336,716 336,716 336,716 336,716 336,716 336,716 336,716
Marginal Effect −0.011 0.003 −0.005 0.009 −0.010 −0.000 0.004 0.008
Control Mean 0.064 0.067 0.059 0.058 0.063 0.068 0.061 0.055
P-val (Q1 + Tr ×Qx = 0) - 0.081 0.239 0.657 - 0.0426 0.290 0.684

Notes: The dependent variable is an indicator for student-day absences. All models include student, date, school-by-
weekday, and school-by-month fixed effects, and are estimated with a Probit Maximum Likelihood Estimator panel model.
Coefficients are effects on log-odds. Marginal effects are reported at the table bottom. The bottom line reports the average
post-treatment absences in the control group in the specific sub-groups. Panel A reports the main effect (Column 1);
interactions of the treatment indicator (Treat×Post) with quartiles of pre-treatment absence rates (the lowest quartile is
the reference) in Columns 2-5; interactions with student characteristics (sex and citizenship) in Columns 6-9. The sample
size decreases slightly in columns 2–5 because there was no data on pre-treatment absences for a small number of students.
Panel B reports heterogeneous treatment effects estimates by the 10-day rolling sum of days with outdoor average PM2.5

exceeding the daily WHO thresholds (15 µg/m3) and the 10-day rolling lagged outdoor PM2.5 levels. Both variables are
constructed using the quartile split (with the lowest category as the reference). The bottom line shows the p-values of
the treatment effect in the different quartiles, obtained from the test of Q1 + Tr × QX, for the second, third and fourth
quartiles. Standard errors are clustered at the treatment level (classroom). Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, ∗

p<0.1.



Figure 1: Dynamic effects on absences
Notes: The left panel figure shows the seasonality of absences in the control group, expressed as average absences per 100
students in the month. The right panel figure shows the dynamic treatment effects on daily absences and 90% confidence
intervals. Models are estimated with Probit. Marginal effects are reported. The reference probability at t-1 (October 2023)
is 4.7%. The models include calendar date, day of the week, school-by-weekday, and school-by-month, and grade fixed
effects. Standard errors are clustered at the treatment level (classroom).



Table 4: Impact on Self-Reported Health Symptoms, Perceptions, and Preferences

Panel A: Impact on Self-Reported Health

(1) (2) (3) (4) (5) (6) (7) (8)
Symptoms

Runny nose Blocked nose Sneezing Cough Short breath Tiredness Headache Stomach ache

Estimate -0.150* -0.118* -0.093 -0.058 0.082 0.030 0.006 0.034
(0.079) (0.068) (0.070) (0.084) (0.093) (0.081) (0.068) (0.068)

N.Obs 1,589 1,597 1,587 1,621 1,555 1,570 1,571 1,574
Marginal effect -0.059 -0.046 -0.034 -0.023 0.027 0.011 0.002 0.013
Control Mean 0.532 0.569 0.664 0.576 0.259 0.646 0.452 0.403

Panel B: Impact on Perceptions and Preferences

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Air Quality Perception Urban Policy Priorities

General City Class Schoolyard
City

cleaning
Green

playgrounds
Sport

infrastructure
Air

quality
Less
traffic

Estimate 0.132 -0.043 0.247∗∗ -0.038 0.089 0.101 0.002 0.181∗∗ -0.011
(0.099) (0.092) (0.093) (0.101) (0.076) (0.088) (0.079) (0.081) (0.068)

N.Obs 1,715 1,742 1,733 1,725 1,729 1,720 1,704 1,716 1,695
N.Class 95 95 95 95 95 95 95 95
Control Mean 2.978 2.559 3.109 3.360 3.509 3.280 3.088 3.456 3.158

Notes: Panel A reports Probit estimates of the treatment effect on self-reported health symptoms. Marginal effects are
reported at the bottom of the table. The dependent variables equal one if the student reported the symptom at least
some time over the previous week and zero otherwise. Panel B presents estimates of the impact on perceptions and policy
preferences using Ordered Probit models. The first four columns report an air quality perception index (scored from 1
(very bad) to 4 (very good)), and the next five columns report a policy priority score on urban issues (scored from 1 (not
important at all) to 4 (very important)). Models control for gender and foreign nationality and include grade and school
fixed effects; standard errors are clustered at the treatment (classroom) level. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05,
and ∗ p<0.1.
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Appendix

A. Additional tables and figures

Table A.1: Survey attrition and missing values at the baseline

(1) (2) (3) (4) (5)
Obs Control ATE

Mean SD Estimate SE

Surveyed in wave 1 2051 0.888 0.315 -0.006 0.057
Missing values in:
Some symtoms: runny nose 1822 0.223 0.417 -0.040 0.038
Some symtoms: blocked nose 1822 0.228 0.420 -0.035 0.041
Some symtoms: sneezing 1822 0.225 0.418 -0.019 0.041
Some symtoms: cough 1822 0.232 0.422 -0.039 0.040
Some symtoms: short of breath 1822 0.265 0.441 -0.039 0.043
Some symtoms: tiredness 1822 0.257 0.437 -0.049 0.044
Some symtoms: head ache 1822 0.244 0.430 -0.030 0.043
Some symtoms: stomach ache 1822 0.259 0.438 -0.043 0.043
Air quality perception: overall 1822 0.149 0.356 -0.007 0.026
Air quality perception: city 1822 0.145 0.352 0.006 0.025
Air quality perception: class 1822 0.150 0.357 -0.004 0.027
Air quality perception: school yard 1822 0.153 0.360 -0.008 0.027
Prioriy policy score: cleaning 1822 0.153 0.360 -0.020 0.027
Prioriy policy score:: green and playgrounds 1822 0.161 0.368 -0.016 0.026
Prioriy policy score: sport infrastructures 1822 0.169 0.375 -0.016 0.026
Prioriy policy score: air quality 1822 0.159 0.366 -0.007 0.026
Prioriy policy score: less traffic 1822 0.177 0.382 -0.020 0.030

Notes: The table presents the mean and standard deviation in the control group for the probability of participating
in the baseline survey and for the probability of non-reporting a given question in the first survey wave, conditional on
participating in it (Columns 2-3). It reports the estimate and standard error of the difference in mean between treatment
and control group in Columns 4-5.

Table A.2: Survey attrition and missing values at the endline

(1) (2) (3) (4) (5)
Obs Control ATE

Mean SD Estimate SE

Surveyed in wave 2 2051 0.876 0.330 0.024 0.034
Missing values in:
Some symtoms: runny nose 1815 0.132 0.338 -0.018 0.034
Some symtoms: blocked nose 1815 0.128 0.334 -0.020 0.035
Some symtoms: sneezing 1815 0.139 0.346 -0.032 0.034
Some symtoms: cough 1815 0.124 0.329 -0.042 0.034
Some symtoms: short of breath 1815 0.155 0.362 -0.028 0.036
Some symtoms: tiredness 1815 0.152 0.359 -0.041 0.036
Some symtoms: head ache 1815 0.155 0.362 -0.048 0.037
Some symtoms: stomach ache 1815 0.151 0.358 -0.043 0.036
AQ perception: overall 1815 0.052 0.222 0.008 0.016
AQ perception: city 1815 0.040 0.196 0.003 0.013
AQ perception: class 1815 0.042 0.200 0.009 0.015
AQ perception: school yard 1815 0.049 0.216 0.002 0.015
Prioriy policy score: cleaning 1815 0.048 0.214 -0.002 0.012
Prioriy policy score+A35:D55: green and playgrounds 1815 0.049 0.216 0.007 0.015
Prioriy policy score: sport infrastructures 1815 0.065 0.246 -0.009 0.015
Prioriy policy score: air quality 1815 0.056 0.230 -0.004 0.014
Prioriy policy score: less traffic 1815 0.063 0.243 0.007 0.018

Notes: This table presents the mean and standard deviation in the control group for the probability of participating in
the endline survey and for the probability of non-reporting a given question in the second wave survey, conditional on
participating in it (Columns 2-3). It reports the estimate and standard error of the difference in mean between treatment
and control group in Columns 4-5.



Table A.3: Average treatment effects on indoor air quality and environmental variables,
including non-school days

(1) (2) (3) (4) (5)
Indoor air quality Other environmental variables

PM2.5 PM10 CO CO2 Temp.

Estimate -3.353∗∗∗ -3.395∗∗∗ -0.1197 12.43 -0.3516
(0.8421) (0.8761) (0.2954) (57.23) (0.3026)

N.Obs 5,651 5,651 5,651 5,651 5,651
Control Mean 11.959 12.405 1.207 678.380 20.444
Rel. Change % −28.04 −27.36 −9.90 1.83 1.72

Notes: This table reports the average treatment effects (ATE) on indoor air quality measures (PM2.5, PM10, CO) alongside
effects on other environmental variables (CO2 and temperature). The sample includes school and non-school days. All
models include calendar date, day of the week, school-by-weekday, school-by-month, and grade fixed effects. Standard
errors are clustered at the treatment (classroom) level. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.

Table A.4: Average treatment effect on absences, robustness check

(1) (2) (3)
Daily absence

LPM Poisson ZIP count

Estimate -0.006 -0.123* -0.125**
(0.004) (0.073) (0.059)

N.Obs 336,716 16,203 16,203
Control Mean. 0.061 1.27 1.27

Notes: The table reports the average treatment effects on daily absences. The dependent variable is daily student absence
(Column 1) and the count of daily classroom absences (Columns 2-3). The models include student (LPM) and classroom
(Poisson and ZIP), date, school-by-weekday, school-by-month fixed effects. The control group mean and standard deviation
of the outcome in the post-treatment period are reported at the bottom. Standard errors clustered at the treatment level
(classroom). ∗∗∗ significance at the 1% level, ∗∗ at the 5% level, ∗ at the 10% level.

Table A.5: Heterogeneous treatment effects on school absences by grade

(1) (2) (1) (2) (3) (4) (5)
Pre-treat Absences Daily absence by Grade

Tr Tr× PreAbs 1st Grade Tr×2nd Tr×3rd Tr×4th Tr×5th

Estimate 0.027 -0.009* -0.083 -0.045 -0.011 0.154 -0.013
(0.043) (0.004) (0.057) (0.103) (0.090) (0.118) (0.089)

N.Obs 335,861 335,861 336,716 336,716 336,716 336,716 336,716
Marginal Effect 0.0027 -0.0008 -0.008 -0.005 0.001 0.016 0.001

Notes: The dependent variable is an indicator variable for student-day absences. The empirical model includes student,
date, school-by-weekday, and school-by-month fixed effects, and is estimated with a Probit Maximum Likelihood Estimator
panel model. Coefficients are effects on log-odds. Marginal effects are reported at the table bottom. In Columns 1-5, the
treatment indicator (Treat ×Post) is interacted with binary variables for the grade (grades 1 through 5), where grade 1
serves as the reference category. Standard errors are clustered at the treatment (classroom) level. ∗∗∗ significance at the
1% level, ∗∗ at the 5% level, ∗ at the 10% level.



Table A.6: Heterogeneous treatment effects by outdoor levels of air pollution (linear
interaction)

(1) (2) (3) (4)
Daily absence

WHO exceedances
last ten days

Ten days PM2.5

rolling average

Tr Tr× WHO Tr Tr× PM2.5

Estimate −0.104∗∗ 0.009∗∗ −0.120∗∗∗ 0.003∗∗

(0.041) (0.004) (0.044) (0.001)

N.Obs 336,716 336,716 336,716 336,716
Marginal Effect −0.011 0.001 −0.012 0.000

Notes: The dependent variable is an indicator for student-day absences. All models include student, date, school-by-
weekday, and school-by-month fixed effects, and are estimated with a Probit Maximum Likelihood Estimator panel model.
Coefficients are effects on log-odds. Marginal effects are reported at the table bottom. We reports heterogeneous treatment
effects estimates by the 10-day rolling sum of days exceeding the daily WHO threshold of 15 micrograms per cubic meter
(µg/m3) (Columns 1-2) and 10-day rolling mean PM2.5 level (Columns 3-4). Standard errors are clustered at the treatment
level (classroom). Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1.

Table A.7: Heterogeneous treatment effects by outdoor levels of pollen: Quartile interaction
model

(1) (2) (3) (4)
Daily absence

Q1 Tr×Q2 Tr×Q3 Tr×Q4

All Pollens -0.063 -0.016 0.016 -0.003
(0.046) (0.039) (0.045) (0.044)

Selected Pollens -0.067 -0.001 -0.015 0.024
(0.046) (0.051) (0.042) (0.037)

N.Obs 336,720 336,720 336,720 336,720

Notes: The dependent variable is an indicator for student-day absences. We report heterogeneous treatment effect estimates
based on the average of outdoor pollen levels. Every row provides a separate regression for each group of pollens indicated.
All pollens includes: Alternaria, Alnus, Betula, Cladosporium, Ambrosia, Artemisia, Carpinus betulus, Corylus avellana,
Cupressaceae and Taxaceae, Fagaceae, Gramineae, Oleaceae, Urticaceae. Selected Pollens includes Ambrosia, Grimanae,
Cupr-Taxaceae, and Betula. Concentrations are calculated as total pollen per m3. Data on pollen concentrations comes
from weekly pollen bulletins compiled by the Association of Italian Territorial and Hospital Allergists and Immunologists
(https://www.pollinieallergia.net/). The model multiplies the treatment indicator (Treat×Post) by three indicator variables
equal to one if the pollen in the given row is within the second, third, and fourth concentration quartiles for the 10-day
average concentration in the city of Milan. The reference category includes days in the lowest quartile of the given pollen
level. All models include student, date, school-by-weekday, and school-by-month fixed effects, and are estimated with a
Probit Maximum Likelihood Estimator panel model. Coefficients are effects on log-odds. Marginal effects are reported
below each estimate. Standard errors are clustered at the treatment level (classroom). Significance levels: ∗∗∗ p<0.01, ∗∗

p<0.05, ∗ p<0.1.

Table A.8: Correlation between reported symptoms and absences at baseline

(1) (2) (3) (4) (5) (6) (7) (8)
Symptoms

Runny nose Blocked nose Sneezing Cough Short breath Tiredness Headache Stomach ache

Pre-treat absences 0.309* 0.331* 0.053 0.238 0.250 0.259 0.191 0.035
(0.186) (0.183) (0.177) (0.185) (0.164) (0.182) (0.188) (0.184)

N. Obs. 1,451 1,437 1,430 1,433 1,375 1,397 1,405 1,389

Notes: Panel A reports Probit estimates (marginal effects) of the correlation of pre-treatment absences and self-reported
health symptoms. The dependent variables equal one if the student reported the symptom at least some time over the
previous week and zero otherwise. Models control for gender and foreign nationality and include grade and school fixed
effects. Robust standard errors in parentheses. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.



B. Air pollution in the North of Italy

Air pollution levels in Northern Italy consistently exceed WHO guidelines. For instance, in

2021, the average annual concentration of PM2.5 in Milan—the region’s largest city—was above

20 µg/m3, surpassing the WHO recommended limit of 15 µg/m3. Figure B.1 shows the share

of deaths and years of life lost among children under 16 attributable to air pollution, across

selected European countries. In 2019, 4.2% of child fatalities in Italy were linked to air pollution

exposure—the highest rate among major Western European nations (Institute for Health Metrics

and Evaluation, 2019).

Figure B.1: Proportion of total deaths and years of life lost due to air pollution exposure for
children between zero and sixteen years old (2010-2019) Notes: Source: IHME
(2023)

?? Panel (a) displays the average annual PM2.5 concentrations in Milan from 2008 to 2020.

While air pollution has declined over this period, levels remain well above the WHO thresholds

for good air quality. Moreover, annual averages can mask significant seasonal peaks, as illustrated

in Panel (b). Pollution levels are notably higher in winter than in summer, driven by factors

such as thermal inversions, increased residential heating, and the reduced efficiency of internal

combustion engines at lower temperatures.

To reduce exposure to air pollution, regional and local governments have implemented various

measures, including investments in public transportation, upgrades to power plants, promotion

of cleaner fuels, improvements in energy efficiency, and public awareness campaigns on air quality

(Italian Republic, 2010; Lombardy Region, 2006, 2013). In Milan, vehicle traffic is regulated

through a congestion charge introduced in 2012 and a Low Emission Zone (LEZ) established



in 2022 (Municipality of Milan, 2022a, 2023).17 The city also continues to invest in public

infrastructure to improve the public transport network and promote cycling as part of its broader

Air-Climate Plan (Municipality of Milan, 2022b). However, these efforts have produced only

marginal improvements, typically appearing over the medium to long term.

(a) Yearly (b) Monthly

Figure B.2: Yearly and monthly time series of average PM2.5 in Milan (2008-2020)
Notes: The values come from yearly and monthly averages of daily air pollution measurements
across the 39 stations in the metropolitan city of Milan. The red line marks the yearly guideline
values set by the WHO (5 µg/m3).

C. Purifiers and monitors’ technical features

The study utilizes NETCO NIVEUS NV100 purifiers, shown in the left panel of Appendix

Figure C.1. These purifiers feature U15 Ultra Low Particulate Air (ULPA) filters, which capture

up to 99.99% of particles larger than 0.026 microns. ULPA filtration is the highest standard

of mechanical air purification, certified and recognized internationally. It surpasses the more

common HEPA filters, providing 10 to 100 times greater efficiency (see Appendix Figure C.1).

The purifiers are energy-efficient, consuming only 4W per hour at the operating speed used in

the study, comparable to a 60-watt incandescent bulb. They also operate quietly, with average

acoustic pressure levels ranging from 29 to 45 dB(A). Air enters the device and passes through

the ULPA filter, made of layers of ultrafine material, followed by an activated carbon filter, before

being recirculated into the environment. The efficiency of the purifiers is measured primarily by

the Clean Air Delivery Rate (CADR), expressed in cubic meters per hour (m3/h), and the Air

Exchange Rate, which indicates how many times per hour the purifier can filter all the air in a

given room. Following the manufacturer’s recommendations, we selected a model suitable for the

17While many studies find that LEZs significantly improve environmental outcomes (Klauber et al., 2024; Pestel
and Wozny, 2021; Gehrsitz, 2017), the local environmental impact of Milan’s congestion charge appears to be
limited (Percoco, 2013, 2014).



average classroom volume. The installed units have a CADR of 200 m3/h, yielding an average

Air Exchange Rate of 1.04 across classrooms (ranging from 0.7 to 1.5). To balance effectiveness

and noise reduction, purifiers operate at 60% capacity (speed 3 of 5), producing an acoustic

pressure of 33.5 dB(A)—below the WHO recommended limit of 35 dB(A) for classrooms.

In addition to the purifiers, we installed 31 ENVIRA Nanoenvi indoor air quality sensors, as

shown in the right panel of Figure C.1. These sensors measure concentrations of CO2 (ppm),

PM2.5, PM10, and CO (ppm), along with temperature (◦C), humidity (%), and atmospheric

pressure (hPa). Their technical specifications are detailed in Appendix Table C.2. Once powered

and connected to the internet, the sensors transmit measurements every 30 seconds to an online

data platform. Each device features a small LED display that visually represents indoor air

quality using a four-level color-coded scale based on the Indoor Ambient Air Quality Index

defined by the manufacturer. To ensure comparability between classrooms with and without

sensors—and to minimize the risk of influencing behavior—we covered the LED displays with

anti-tampering tape to prevent students and teachers from seeing real-time air quality readings.

Figure C.1: Purifiers and sensors installed
Notes: Left: The NETCO NIVEUS NV100 air purifiers installed in treated classes. The

purifiers mount U15 Ultra Low Particulate Air (ULPA) filters and have a CADR of 200 m3/h.
Right: NVIRA Nanoenvi indoor air quality sensors installed in 31 calsses. The LED disaplays

have been LED displays with covered with anti-tampering tape.



Table C.1: Efficiency of different mechanical filter technologies.

Filter Group Class MPSS INTEGRAL VALUES MPSS INTEGRAL VALUES

Efficiency (%) Penetration (%) Efficiency (%) Penetration (%)

EPA
E10 85 15 - -
E11 95 5 - -

HEPA
E12 99.5 0.5 - -
H13 99.95 0.05 99.75 0.25
H14 99.995 0.005 99.975 0.025

ULPA
U15 99.9995 0.0005 99.9975 0.0025
U16 99.99995 5E-05 99.99975 0.00025
U17 99.99995 5E-05 99.9999 0.0001

Notes:

Table C.2: Technical specifications of the low-cost sensors employed.

Pollutant/Parameter Precision Measuring range
Carbon monoxide (CO) ±5% 0 - 5000 ppm
Particulate matter (PM2.5) ±10 µg/m3 0 - 1000 µg/m3

Carbon dioxide (CO2) ±30 ppm 0 - 40000 ppm
Temperature ±0.02 ºC 0 - 65 ºC
Relative humidity ±2% 10 - 95%
Atmospheric pressure ±10 hPa 500 - 1150 hPa

Notes: This table presents the precision and measuring range of low-cost sensors by measured pollutant (CO, CO2, PM2.5)
and environmental parameter (temperature, relative humidity, atmospheric pressure). Source: (ENVIRA, 2024a,b).

D. Indoor sensors’ intercomparison

We conducted a sensor-to-sensor intercomparison study to evaluate the performance and con-

sistency of the ENVIRA Nanoenvi low-cost sensors. To ensure comparability, we co-located

all sensors in an indoor, non-laboratory environment and operated them continuously for four

days under nearly identical conditions. We positioned the sensors at a uniform height, spaced

approximately 30 cm apart, to minimize differences in exposure to air volume and environmental

factors. We computed hourly averages for all monitored variables. Table D.1 presents summary

statistics, including sample size, mean, standard deviation, minimum, maximum, and quartiles.

We identified one monitor as an outlier due to its low variation and extremely low pollutant

readings. We excluded this monitor from all analyses.

To assess whether imprecise measurements bias our main impact estimates, we calculated the

absolute hourly deviation from the overall mean monitor reading for each sensor, using the aver-

age across all sensors. We then regressed these absolute deviations on a treatment indicator and

hour fixed effects. Results presented in Table D.2 indicate no statistically significant differences

in measurement accuracy between sensors installed in treatment and control classrooms.



Table D.1: Hourly-level sensor-to-sensor intercomparison summary statistics

Parameter N Mean Sd Min 25th 50th 75th Max
PM2.5 2418 13.78 6.81 5.49 10.09 12.27 14.79 84.34
PM10 2418 13.85 7.04 5.49 10.10 12.29 14.81 96.69
CO 2418 1.23 0.83 0.00 0.41 1.34 1.96 3.57
CO2 2331 853.40 179.36 380.68 751.45 847.91 936.66 1864.11
Temperature 2418 21.16 0.41 20.05 20.85 21.16 21.45 22.42
Humidity 2418 65.96 2.26 58.00 64.49 66.03 67.60 71.38
Atmospheric pressure 2418 1010.09 1.29 1006.57 1009.17 1010.02 1010.92 1014.07

Notes: The sample size for CO2 is lower due to missing data in two sensors.

Table D.2: Average treatment effects on the absolute deviations of indoor air quality and
environmental variables in the sensor-to-sensor intercomparison

(1) (2) (3) (4) (5) (6) (7)
Absolute deviation from hourly mean

Indoor air quality Other environmental variables

PM2.5 PM10 CO CO2 Temp. Humidity Pressure

Estimate 0.106 0.111 -0.147 5.61 0.016 -0.083 0.020
(0.084) (0.093) (0.136) (4.73) (0.058) (0.179) (0.196)

N.Obs 2,418 2,418 2,418 2,331 2,418 2,418 2,418
Control Mean 3.900 3.980 0.803 106.492 0.323 1.714 0.857

Notes: The table reports the average treatment effects (ATE) on indoor air quality (PM2.5, PM10, CO) and other
environmental variables (CO2 and temperature, humidity, and atmospheric pressure) absolute deviations from the hourly
means. The sample is restricted to sensor-to-sensor intercomparison days. All models include hour fixed effects. Standard
errors are clustered at the sensor level. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.



E. Detecting ventilation episodes

Natural ventilation through open windows and doors alters the air exchange rate between indoor

and outdoor environments, which can impact the effectiveness of air purifiers. We investigate how

air purifiers affect ventilation behavior in treatment and control classrooms. The installation of

purifiers can lead to conflicting outcomes: teachers in treated classrooms may reduce ventilation

to optimize purifier performance and limit the infiltration of outdoor pollutants. Conversely,

the protection offered by purifiers might encourage more frequent ventilation, even during high

pollution periods, based on the assumption that the device lessens associated risks. To identify

ventilation events, we leverage the characteristic sharp declines in indoor CO2 concentrations

that typically occur during air exchange with the external environment. These events may also

accompany temperature drops when outdoor temperatures fall below indoor levels.

We focus our analysis on school hours and exclude the last 90 minutes before student dismissal

to prevent capturing air quality changes linked to end-of-day routines. To reduce measurement

noise, we apply a five-minute rolling average to the temperature time series. We define “ven-

tilation episodes” based on specific thresholds for the magnitude and duration of decreases in

indoor CO2 concentrations and, when applicable, temperature. It is important to note that a

single instance of window or door opening may result in the detection of multiple ventilation

episodes. Figure E.1 illustrates the distribution of detected ventilation episodes under various

threshold definitions.

To examine whether air purifiers influenced ventilation behavior, we estimate model 1 using

the daily number of ventilation episodes as the dependent variable. Table E.1 reports average

treatment effects based on different threshold definitions. For instance, Column 1 shows the

treatment effect on the number of episodes per day where CO2 concentrations decrease by at

least 25 ppm per minute and temperature drops by at least 0.005°C per minute for at least

a minute. Columns 7 to 12 define ventilation episodes based solely on CO2 drops, noting

that during spring and fall, outdoor temperatures may exceed indoor temperatures, potentially

leading to an increase in indoor temperature during ventilation.

Across all specifications, we find no statistically significant differences between the treatment and

control groups. This indicates that installing air purifiers did not change ventilation behavior.

Since ventilation patterns may vary seasonally with outdoor temperatures, we further split the

sample into winter and spring months (Tables E.2 and E.3). Even when disaggregated by season,

we find no significant differences in ventilation behavior between treated and control classrooms.
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Figure E.1: Distribution of detected ventilation episodes for different thresholds.

Table E.1: Average treatment effect on the number of ventilation episodes

Daily ventilation episodes
(1) (2) (3) (4) (5) (6)

<-25ppm

<-0.005°
>1’

<-25ppm

<-0.005°
>2’

<-25ppm

<-0.005°
>5’

<-50ppm

<-0.005°
>1’

<-50ppm

<-0.005°
>2’

<-50ppm

<-0.005°
>5’

Estimate 0.250 0.148 0.035 -0.032 0.012 -0.002
(0.42) (0.24) (0.08) (0.31) (0.16) (0.04)

Control Mean 3.5 1.4 0.2 1.5 0.6 0.1
Observations 3422 3422 3422 3422 3422 3422

(7)

<-25ppm

>1’

(8)

<-25ppm

>2’

(9)

<-25ppm

>5’

(10)

<-50ppm

>1’

(11)

<-50ppm

>2’

(12)

<-50ppm

>5’

Estimate 0.311 0.251 0.130 -0.029 0.012 0.001
(0.63) (0.38) (0.17) (0.47) (0.26) (0.08)

Control Mean 6.6 2.7 0.6 2.6 1.0 0.2
Observations 3422 3422 3422 3422 3422 3422

Notes: The dependent variable is the number of ventilation episodes per day, identi-

fied by prolonged variations (in minutes) in indoor concentrations of CO2 (ppm) and

temperature (°C) (Columns (1)- (6)) or CO2 alone (Columns (7)- (12)). All regressions

include fixed effects for grade, calendar day, school-by-weekday, and school-by-month.

The sample is restricted to school days. Standard errors are clustered at the treat-

ment level (classroom). ∗∗∗ significance at the 1% level, ∗∗ at the 5% level, ∗ at the

10% level.



Table E.2: Average treatment effect on the number of ventilation episodes from November to
March

Daily ventilation episodes, November to March
(1) (2) (3) (4) (5) (6)

<-25ppm

<-0.005°
>1’

<-25ppm

<-0.005°
>2’

<-25ppm

<-0.005°
>5’

<-50ppm

<-0.005°
>1’

<-50ppm

<-0.005°
>2’

<-50ppm

<-0.005°
>5’

Estimate 0.172 0.098 0.036 -0.083 0.004 0.005
(0.44) (0.25) (0.09) (0.32) (0.17) (0.05)

Control Mean 3.6 1.5 0.3 1.5 0.6 0.1
Observations 2226 2226 2226 2226 2226 2226

(7)

<-25ppm

>1’

(8)

<-25ppm

>2’

(9)

<-25ppm

>5’

(10)

<-50ppm

>1’

(11)

<-50ppm

>2’

(12)

<-50ppm

>5’

Estimate 0.412 0.249 0.130 0.002 0.028 0.003
(0.68) (0.41) (0.19) (0.50) (0.28) (0.09)

Control Mean 6.3 2.8 0.6 2.5 1.0 0.2
Observations 2226 2226 2226 2226 2226 2226
R-squared 0.31 0.30 0.26 0.29 0.25 0.20

Notes: Sample restricted to November, December, January, February, and March.

The dependent variable is the number of ventilation episodes per day identified by

prolonged variations (in minutes) in indoor concentrations of CO2 (ppm) and tem-

perature (°C) (Columns (1)- (6)) or CO2 alone (Columns (7)- (12)). All regressions

include fixed effects for grade, calendar day, school-by-weekday, and school-by-month.

The sample is restricted to school days. Standard errors are clustered at the treat-

ment level (classroom). ∗∗∗ significance at the 1% level, ∗∗ at the 5% level, ∗ at the

10% level.

Table E.3: Average treatment effect on the number of ventilation episodes from April to June

Daily ventilation episodes, April to June
(1) (2) (3) (4) (5) (6)

<-25ppm

<-0.005°
>1’

<-25ppm

<-0.005°
>2’

<-25ppm

<-0.005°
>5’

<-50ppm

<-0.005°
>1’

<-50ppm

<-0.005°
>2’

<-50ppm

<-0.005°
>5’

Estimate 0.419 0.259 0.037 0.063 0.031 -0.014
(0.43) (0.24) (0.08) (0.31) (0.16) (0.05)

Control Mean 3.3 1.1 0.2 1.5 0.5 0.1
Observations 1196 1196 1196 1196 1196 1196

(7)

<-25ppm

>1’

(8)

<-25ppm

>2’

(9)

<-25ppm

>5’

(10)

<-50ppm

>1’

(11)

<-50ppm

>2’

(12)

<-50ppm

>5’

Estimate 0.133 0.284 0.141 -0.083 -0.013 -0.003
(0.63) (0.37) (0.16) (0.46) (0.24) (0.08)

Control Mean 7.2 2.5 0.4 2.9 1.0 0.1
Observations 1196 1196 1196 1196 1196 1196

Notes: Sample restricted to April, May, and June. The dependent variable is the

number of ventilation episodes per day, identified by prolonged variations (in minutes)

in indoor concentrations of CO2 (ppm) and temperature (°C) (Columns (1)- (6)) or

CO2 alone (Columns (7)- (12)). All regressions include fixed effects for grade, calendar

day, school-by-weekday, and school-by-month. The sample is restricted to school days.

Standard errors are clustered at the treatment level (classroom). ∗∗∗ significance at

the 1% level, ∗∗ at the 5% level, ∗ at the 10% level.



F. Pre-specified analysis and deviations from the pre-analysis plan

The current study presents deviations from the pre-analysis plan (PAP) uploaded to the Registry

of the American Economic Association.18 We document and explain the choices made in this

paper and provide evidence for the commitments outlined in the PAP that were not implemented

in the final version.

Main outcomes: In the PAP, the main outcomes were: PM2.5, absences, cognitive skills,

achievement, mood, and aggressive episodes. The manuscript presents evidence only on PM2.5

and absences.

We chose not to request achievement data from the Italian National Institute of Evaluation

of the Education System (INVALSI) and, as a result, omitted the analysis of achievement for

the following reasons. First, national tests are available for only 40% of students, as they are

administered only in the second and fifth grades. Second, a recent change in the Institute’s data

protection protocols restricts tracking of individual students, even with fully anonymized data.

Score data is accessible only for groups of three students. These factors significantly reduce

statistical power and compromise the reliability of our estimates.

For cognitive skills, mood, and aggressive episodes, we used the PAP for their operationalization

based on student surveys. The cognitive skill assessment is a Raven test. It consists of a series

of visual patterns with a missing piece, where test-takers must choose the correct piece from

multiple options. We selected the suitable version for children aged 5 to 12 years from the first

wave of the Mexican Family Life Survey (Rubalcava and Teruel, 2006). We summed all correct

answers to create a score ranging from 0 to 18 and standardized this score to have a mean of zero

and a variance of one for each school-grade combination, using the mean and standard deviation

from the control group.

We assess students’ mood over the previous week using a survey question based on a Likert scale

(very positive, positive, negative, very negative) which we convert into a 1-4 index. To proxy

aggressive episodes, we create a dummy variable that equals one if students report arguing or

quarreling with any classmate during the past week (sometimes, often, very often) and zero

otherwise (never).

Appendix Table F.1 presents the results of the pre-specified main outcomes with the multiple

hypothesis correction described in the PAP, specifically FDR-adjusted q-values (Benjamini et al.,

18It is available at https://www.socialscienceregistry.org/trials/11960.



2006). The treatment does not significantly impact cognitive skills, mood, or aggressive episodes.

Only the effect on indoor air quality remains significant after the multiple hypothesis correction.

Table F.1: Average treatment effect on primary pre-specified outcomes

(1) (2) (3) (4) (5)

PM2.5
Daily

Absence
Standardized
Raven Score

Mood
Aggressive
Episodes

Estimate -4.489*** -0.0641* -0.033 0.076 0.077
(0.521) (0.0381) (0.050) (0.071) (0.090)
[0.001] [0.227] [0.44] [0.397] [0.417]

N.Obs 336,716 336,716 1,815 1,651 1,770
Control Mean 11.80 0.056 0 3.424 0.395

Notes: Standard errors clustered at the treatment level (classroom). ∗∗∗ Significance at the 1% level, ∗∗ at the 5% level,
∗ at the 10% level. FDR adjusted q-values Benjamini et al. (2006) are reported in brackets.

Secondary outcomes: Most secondary outcomes outlined in the PAP are included in the

manuscript, except for data on non-standardized student grades calculated at the end of each

semester. After extensive discussions with the directors, we concluded that these evaluations are

highly subjective and specific to individual teachers and their classes. Since this dataset aimed

to support the evidence from national standardized tests, we decided not to proceed with the

request in their absence.

Data: In the PAP, we committed to using absence data from two school years: 2022-23 and

2023-24. However, the manuscript only uses data from the latter year. This decision arises

from a change in the absence digitization system at one school, which limited access to the

2022-23 data. Consequently, we faced a significant reduction in sample size, worsened by the

natural sample loss of 20% among first graders in 2023-24 who were not part of the 2022-23

data. Therefore, we chose to use only the 2023-24 data to maintain adequate statistical power.

Models: The specification in Section 4.3 for survey outcomes differs from that in the PAP. In

this specification, we regress endline outcomes on a treatment dummy, individual characteristics,

grade, and school fixed effects. In the PAP, we committed to a two-way fixed effects model that

included student and survey wave fixed effects. The reasons for these changes are: i. We

conducted only two survey waves instead of the planned three due to budget constraints and

the inability to conduct a midline survey in some schools. ii. We did not anticipate attrition

rates of 11% and 12% in the first and second waves, respectively, or the missing value patterns

affecting certain variables (see Appendix Tables A.1 and A.2). Combining both waves in the

same model (panel or ANOVA) would result in a sample reduction of 33% to 45% (depending

on the variable considered), leading to a loss of statistical power.



Heterogeneity: In the PAP, we committed to examining heterogeneous treatment effects on

absences based on pre-treatment absence levels, seasonality (winter vs. spring and fall), and

outdoor air pollution values from the previous week. The main text presents these analyses

with slight modifications to our operationalization of the heterogeneity dimensions. First, pre-

treatment absences refer to the months before treatment deployment, rather than the previous

school year. We present the quartile split in the main text and the continuous variable in the

appendix instead of the pre-registered median split. This change is based on evidence showing

that high values significantly influence heterogeneous effects. Second, we present seasonal effects

using monthly data (Figure 1), which provide more precise evidence of treatment dynamics.

Third, we utilize the 10-day rolling outdoor PM2.5 concentration, constructing quartiles and

the continuous variable as interaction terms. This approach highlights the role of extremes and

calculates the turning point when purifiers cease to be effective. Results, available upon request,

remain consistent whether we use 7, 5, or 3-day rolling averages.

The manuscript introduces additional dimensions of heterogeneity that were not pre-registered:

students’ gender, nationality, and grade. These factors seek to address readers’ interest in

exploring aspects of heterogeneity that we did not expect schools would provide.

Robustness checks: As promised in the PAP, we include indoor temperature and humidity

in our analysis of air purifiers’ impact on indoor pollution. Appendix Table F.2 replicates

the results from Panel A of Table 2 (Columns 1-4). Results are consistent. We exclude class

characteristics (floor and orientation) because these data are unavailable. We do not repeat

this exercise for absences because of sample size limitations and statistical power issues, as the

sample is restricted to classes equipped with sensors.

Table F.2: Average treatment effects on indoor air pollution, robustness

(1) (2) (3)
Indoor Air Quality

PM2.5 PM10 CO

Estimate -4.219*** -4.338*** -0.153
(0.419) (0.429) (0.299)

Temperature -0.557*** -0.488*** 0.057
(0.151) (0.170) (0.066)

Rel. Humidity 0.030 0.0967 -0.025
(0.087) (0.100) (0.034)

N.Obs 5,447 5,447 5,447
Control Mean 12.679 13.147 1.291

Notes: This table reports the average treatment effects (ATE) on indoor air quality measures (PM2.5, PM10, and CO).
All models include calendar date, day of the week, school-by-weekday, school-by-month, and grade fixed effects. Different
from the preferred specification, we include indoor air temperature and relative humidity as additional controls. Standard
errors are clustered at the treatment (classroom) level. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.


	Introduction
	Experimental design
	Sample, Data and Outcome Variables

	Descriptive Statistics
	Sample characteristics and balance

	Empirical strategy and results
	Impact on indoor air quality
	Impact on absences
	Impact on self-reported health symptoms, perceptions, preferences, and behaviors

	Discussion
	Cost-effectiveness

	Conclusion
	Additional tables and figures
	Air pollution in the North of Italy
	Purifiers and monitors' technical features
	Indoor sensors' intercomparison
	Detecting ventilation episodes
	Pre-specified analysis and deviations from the pre-analysis plan

