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Abstract

Droughts worldwide are lasting longer, occurring more often, and becoming more intense,
with far‐reaching effects. Beyond water availability, prolonged and cumulative changes in
the water balance can trigger significant shifts in land cover. We assessed how temporal
changes in water supply and demand at multiple time scales affect vegetation productivity
and land cover changes in continental Chile, which has faced severe drought since 2010.
Since 2000, most of the region has experienced a persistent decline in water supply and an
increase in atmospheric water demand. However, in water‐limited ecoregions, vegetation
water demand has decreased over time, with this trend intensifying over longer time
scales. This long‐term reduction in water availability and shifting water demand have led to
declining vegetation productivity, especially in the Chilean Matorral and the Valdivian
temperate forest ecoregions. We found that drought indices related to soil moisture and
actual evapotranspiration at time scales of up to 12 months primarily explain these
declines. Further, our results indicate that drought intensity accounts for up to 78% of
shrubland and 40% of forest area changes across all ecoregions. The most important
variable explaining cropland changes is the burned area. Our results suggest that long‐term
climate change will impact even drought‐tolerant vegetation, underscoring the need for
context‐specific adaptation strategies in agriculture, biodiversity conservation, and natural
resource management.
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1. Introduction

Across many regions of the world, droughts are becoming longer, more frequent, and more
severe1,2, impacting ecosystems via tree mortality3, reducing vegetation productivity1 and
inducing shifts in land use and cover4. However, identifying drought events can be
idiosyncratic due to the varying criteria used for classification. Droughts can be classified
as 1) meteorological, i.e., when precipitation in a specific period falls below mean
precipitation values observed over multiple years5 (usually more than 30 years); 2)
hydrological, i.e., when precipitation anomalies last for long periods (months to years) and
affect the hydrological system6,7 (e.g., streamflows, reservoirs and groundwater); 3)
agricultural, i.e. when precipitation deficits negatively impact plant health, leading to
decreases in crop or pasture productivity8; or 4) ecological, i.e., when water availability
negatively affects the provisioning of ecosystem services and triggers feedbacks in natural
or human systems4. Such feedbacks include drought impacts on human decision making
and activities, which can lead to land‐cover change9,10, which in turn may have cascading
effects on biodiversity and ecosystem services (e.g., ref. 11,12). Despite the high degree of
confidence in the impacts of rising temperatures on the extent, frequency, and severity of
agricultural and ecological droughts2, which are likely to increase even if global warming
stabilizes at 1.5°–2°C, the severity of meteorological droughts has been remarkably stable
globally over the past century13,14. A global study analyzing drought severity trends from
1980 to 2020 reveals that in a few regions (some mid‐latitudinal and subtropical areas),
rising temperatures during the warm season have increased atmospheric evaporative
demand (AED), leading to a depletion of water resources in water‐limited regions and a
decrease in evaporation from irrigated areas13. Thus, rising water demand may reflect
parallel changes in land cover—primarily agriculture—that can exacerbate the effects of
meteorological droughts on ecosystems.

Expanding analyses to include multiple dimensions of droughts can provide
complementary insights into the Earth’s water balance ‐ and its impacts ‐ over multiple
time scales. Yet, the World Meteorological Organization recommends the use of a single
drought index for monitoring droughts15, i.e., the multi‐scale Standardized Precipitation
Index (SPI; ref. 16), which is limited in that it only considers water supply in the form of
precipitation. The Standardized Precipitation Evapotranspiration Index (SPEI; ref. 17) builds
upon SPI by incorporating the effects of temperature on drought, and is now used widely
for drought monitoring (e.g., ref. 18,19). Indices derived from soil moisture products20,21, such
as the Standardized Soil Moisture Index (SSI; ref. 22,23) also monitor water supply and are
thought to better capture water availability for crops, thus providing more relevant
information for evaluating agricultural droughts. To disentangle the effects of precipitation
from those of temperature24, as well as to capture droughts in terms of water atmospheric
demand, AED has been integrated into the Evaporative Demand Drought Index (EDDI; ref.
25,26), which is particularly effective at detecting the rapid onset or intensification of
droughts. To quantify vegetation water demand, one can use the actual evapotranspiration,
or the amount of water removed by evaporation and transpiration; the Standardized
Evapotranspiration Index (SETI; ref. 27) can be used for this purpose. In turn, ecological
droughts, which capture the joint effects of precipitation and temperature in modifying
natural and productive ecosystems28–30, are complex to measure and can therefore be
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monitored using multiple drought indices that capture the multiple dimensions of drought,
e.g., precipitation, temperature, evapotranspiration, and AED. Although such an approach
accounts for the joint effects of changes in natural and productive ecosystems, its potential
impacts on land cover change have been largely unexplored 31,32.

From 1960 to 2019, land‐use change has impacted approximately one‐third of the Earth’s
surface, which is four times more than previously thought33. Despite the considerable
interest in land‐use change dynamics (e.g. ref. 33,34), the direction and magnitude of drought
impacts on land cover change and vegetation productivity remain uncertain35–37.
Meteorological droughts are responsible for approximately 37% of land cover change and
variability in vegetation productivity globally37. However, the evidence supporting these
results is derived from only one drought index, SPEI, which combines a proxy for water
supply ‐ precipitation ‐ with a proxy for water demand ‐ AED ‐ at one time scale (12
months). The use of only one time scale may bias results of drought impacts towards
ecosystems dominated by plant growth forms such as grasses and herbs that respond more
rapidly to drought stress (< 12 months). This is because physiological differences among
and within dominant plant growth forms may increase (or decrease) tolerance of drought
stress38,39. For example, trees growing in more arid ecosystems typically respond over
longer time scales than those in more humid ecosystems40. Another source of uncertainty
regarding drought impacts on land cover change and vegetation productivity are extrinsic
factors, such as large‐scale public policy (e.g., national and international reforestation
initiatives), agricultural practices (e.g., clearing forest for soybean or oil palm), and rural
and urban land use planning 41.

To deepen current knowledge on the multidimensional impacts of drought on the temporal
dynamics of natural and productive ecosystems, we evaluate temporal changes in water
supply and demand, net primary productivity, and land‐cover change across terrestrial
ecosystems in continental Chile for 2000‐2023. Chile’s diverse climate and ecosystems42,43

make it an ideal natural laboratory for assessing the dynamic interactions between climate
and ecosystems, and potential impacts on land‐cover change. Additionally, large parts of
Chile have experienced severe drought conditions that have significantly affected
vegetation and water storage in recent years; north‐central Chile has faced a persistent
precipitation deficit (or “mega‐drought”) since 201044, which strongly impacted native
forests (e.g., ref. 45–47) and agricultural productivity (e.g., ref. 48–50). However, the effects of
this prolonged extreme drought may also extend to changes in land cover, altering the
provision of key ecosystem services and agricultural production. Here, we aim to assess:
short‐ to long‐term time trends (1 to 36 months) in multi‐scalar drought indices that
capture variation in the components of water balance, i.e., water supply (SPI, SPEI, SSI) and
demand (EDDI, SETI) and their impacts on vegetation productivity and land cover change
across continental Chile. We expect that negative drought intensity will decrease vegetation
productivity, and that the magnitude of these impacts will be stronger for drought indices
associated with soil moisture51 (i.e., SSI) and evapotranspiration52 (i.e., SETI). We further
assess the relative influence of drought intensity at multiple temporal scales on land cover
change, relative to human activities that may indirectly influence water demand, across
ecoregions experiencing droughts of varying intensity and duration. We expect that land
cover change will be determined to a greater extent by drought indices at shorter time
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scales for land cover types dominated by vegetation with low drought tolerance, i.e.,
grasslands, while land cover change of more drought tolerant vegetation, i.e., forests and
shrublands, will respond over longer time scales. Our integrative approach assesses
drought impacts by combining multiple dimensions of the water balance—such as water
supply and demand—across multiple time scales and evaluating their effects on vegetation
productivity and land cover change. This framework intends to deepen our understanding
of drought‐driven ecosystem changes worldwide.

2. Materials and Methods
2.1. Study area

Continental Chile has a diverse climate, with strong environmental gradients from north to
south and east to west53 (Fig. 1a), which, together with its complex topography (Fig. 1b),
determine its ecosystem diversity43,54 (Fig. 1c). We therefore divided Chile into ecoregions55,
which are regions that share similar geography and ecology, and have comparable levels of
precipitation and solar radiation. Seven ecoregions were identified: Atacama desert,
Central Andean dry puna, Southern Andean steppe, Chilean Matorral, Valdivian temperate
forests, Magellanic subpolar forests, and Patagonian steppe. The Atacama desert is
predominantly arid with hot (Bwh in the Koppen‐Geiger classification) and cold (Bwk)
temperatures, as well as the northern part of the Chilean Matorral. Most of the land in these
two northern regions is bare, except for a small area where shrublands and grasslands are
present. With an annual rainfall of less than 400 mm, the Central Andean dry puna
ecoregion has low, yet highly seasonal precipitation with an eight‐month dry season, low
temperatures (Bwk) and is dominated by grasslands, shrublands, and savanna. The climate
of the Southern Andean steppe ecoregion is cold desert (BWk), with most precipitation
occurring in the winter. There is little vegetation in this ecoregion because the plants have
adapted to its windy, dry, and cold climate. In central Chile, the climate of the Chilean
Matorral changes to that of an arid steppe with cold temperatures (Bsk). Then, towards the
center‐south of the country, the climate of the Chilean Matorral changes to a Mediterranean
climate, with warm to hot summers (Csa and Csb). Land cover in this ecoregion consists of
a significant amount of shrublands and savannas. The Valdivian temperate forests have a
mostly oceanic climate (Cfb) and a large area of forests and grasslands. The Magellanic
subpolar forests have a tundra climate. Lastly, the Patagonian steppe has high aridity, cold
temperatures (Bsk), and primarily consists of grasslands.
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Figure 1. Climate, topography, and land cover classes across continental Chile. Koppen‐Geiger climate
classes (a), ecoregions (b), topography (c), and persistent land cover classes (> 80%) for 2001‐2023 (d)
across continental Chile.

2.2. Data
2.2.1. Gridded meteorological and vegetation data

To derive a proxy for vegetation productivity, we used the Normalized Difference
Vegetation Index (NDVI) from the MOD13A356 Collection 6.1 product derived from the
MODIS (Moderate‐Resolution Imaging Spectroradiometer) sensor onboard the Terra
satellite. MOD13A3 provides vegetation indices with a 1 km spatial resolution and monthly
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frequency57. We also utilized monthly actual evapotranspiration (ET) retrievals at a ~500m
spatial resolution from the MOD16A2 Collection 6.158 product to assess the water
consumption of vegetation. For soil water availability, water supply, and water demand
variables, i.e., soil moisture, precipitation, AED, and evapotranspiration, we used
ERA5‐Land (ERA5L; ECMWF Reanalysis version 5 over land)59, a reanalysis dataset that
provides atmospheric and land variables since 1950. It has a spatial resolution of 0.1° (9
km), hourly frequency, and global coverage. We selected total precipitation, maximum and
minimum temperature at 2 meters, and volumetric soil water layers between 0 and 100 cm
of depth (see Table S1 & S3).

2.2.2. Gridded indicators for human impacts on land use

To analyze land cover change, we used the classification scheme of the International
Geosphere‐Biosphere Programme (IGBP) from the product MCD12Q1 Collection 6.160 from
MODIS. This product is produced for each year from 2001 to 2023 and defines 17 classes
(see Table S1). To account for the impacts of human activity on land cover change, we
obtained data on road density61 , frequency of fires, and nighttime light emissions for the
period 2012–202362. These products are frequently used to quantify the human footprint
(e.g., ref. 63,64) or biodiversity threats (e.g., ref. 65,66). To capture changes in land cover due to
fires, we calculated the total burned area for 2002‐202367. For nighttime light emissions,
we calculated the average annual  nighttime light emissions.

2.3. Short‐ to long‐term drought trends
2.3.1. Atmospheric Evaporative Demand (AED)

To quantify water demand using drought indices, we first calculated atmospheric
evaporative demand (AED) using the Hargreaves method 68,69:

𝐴𝐸𝐷 = 0. 0023 · 𝑅𝑎 · 𝑇 + 17. 8( ) · 𝑇
𝑚𝑎𝑥

− 𝑇
𝑚𝑖𝑛( )0.5

  , 𝐸𝑞.  1( )

where is extraterrestrial radiation and , , and are mean,𝑅𝑎 𝑀𝐽𝑚
2
𝑑𝑎𝑦

−1( ) 𝑇 𝑇
𝑚𝑎𝑥

𝑇
𝑚𝑖𝑛

maximum, and minimum temperature at 2 m, respectively. For calculating we used°𝐶( ) 𝑅𝑎
the coordinate of the latitude of the centroid of each pixel as follows:

(Eq. 2),𝑅
𝑎

=
14,400

π
· 𝐺

𝑠𝑐
· 𝑑

𝑟
[ω

𝑠
· 𝑠𝑖𝑛 ϕ( ) · 𝑠𝑖𝑛 δ( ) + 𝑐𝑜𝑠 ϕ( ) · 𝑐𝑜𝑠 δ( ) · 𝑠𝑖𝑛 ω

𝑠( ))

where:

: extraterrestrial radiation ,𝑅𝑎 (𝑀𝐽𝑚
−2
𝑑𝑎𝑦 − 1)

: solar constant = 0.0820 ,𝐺
𝑠𝑐

(𝑀𝐽𝑚
−2
𝑚𝑖𝑛

−1
)

: inverse relative distance Earth‐Sun,𝑑
𝑟

sunset hour angle ,ω
𝑠

(𝑟𝑎𝑑)

: latitude , andϕ (𝑟𝑎𝑑)
: solar declination .δ (𝑟𝑎𝑑)
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We selected the Hargreaves method for estimating AED because of its simplicity, as it only
requires temperature and extraterrestrial radiation, and because data needed for
alternative methods (e.g., Penman‐Monteith)  are not easily accessible for Chile 38.

2.3.2. Drought indices

To derive the drought indices of water supply and demand, we used the ERA5L with a
monthly frequency for 2000–2023. Drought indices capture historical anomalies of water
supply and demand. To quantify each anomaly, the common practice is to derive it
following a statistical parametric method in which it is assumed that the statistical
distribution of the data is known70. The use of an erroneous statistical distribution that
does not fit the data is usually the highest source of uncertainty71. In the case of Chile, due
to its high degree of climatic variability, it is difficult to choose a statistical distribution that
can be used across its entire extent. We therefore used a non‐parametric method for the
calculation of the drought indices, following ref. 72.

For monitoring water supply, we used the Standardized Precipitation Index (SPI; ref. 73),
which only uses precipitation data. To evaluate water demand, we chose the Evaporative
Demand Drought Index (EDDI; refs. 25,26), which is based on AED, and the Standardized
Evapotranspiration Index (SETI; ref. 29), which quantifies actual evapotranspiration, i.e. the
amount of water removed from a surface due to evaporation and transpiration. To quantify
the combined effect of water supply and demand, we estimated SPEI17. For SPEI, we
calculated an auxiliary variable ( D) according to:

𝐷 = 𝑃 − 𝐴𝐸𝐷 (𝐸𝑞.  3),

where P is precipitation. Soil moisture is often considered to be the main driver of
vegetation productivity, particularly in semi‐arid regions74. Hence, we used the
Standardized Soil Moisture Index (SSI) to analyze the change in soil moisture (SM)75. For
SSI, we used the average soil moisture from ERA5L in the first meter below the soil. All
calculated indices are multi‐scalar and can be used for the analysis of short‐ to long‐term
droughts.

To derive the drought indices, we first calculated the sum of the variables for each time
scale(s). In this case, for generalization purposes, we use , referring to variables , , ,𝑉 𝑃 𝐴𝐸𝐷 𝐷
ET, and (see Table S2). We summed each variable over the time series (months), for a𝑆𝑀
time scale :𝑠

𝐴
𝑖

𝑠
=
𝑖=𝑛−𝑠−𝑖+2

𝑛−𝑖+1

∑ 𝑉
𝑖
∀𝑖 ≥ 𝑛 − 𝑠 + 1 𝐸𝑞.  4( )

corresponds to a moving window (convolution) that sums the variable over months,𝐴
𝑖

𝑠
𝑠

starting from the most recent month (n) back in time until month n‐s+1. For example, using
precipitation, a period of twelve months (n), and a time scale of three months (s):

𝐴
1

3
 = 𝑃

𝑜𝑐𝑡
+ 𝑃

𝑛𝑜𝑣
+ 𝑃

𝑑𝑖𝑐
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⋮  =  ⋮  +  ⋮  +  ⋮  

𝐴
10

3
 = 𝑃

𝑗𝑎𝑛
+ 𝑃

𝑓𝑒𝑏
+ 𝑃

𝑚𝑎𝑟
 

Then, we used the empirical Tukey plotting position76 over to derive the𝐴
𝑖

𝑠
𝑃 𝑎

𝑖( )
probabilities across a period of interest:

𝑃 𝐴
𝑖

𝑠( ) =
𝑖−0.33

𝑛+0.33'
 𝐸𝑞. 5( )

We use an inverse normal approximation77 to obtain the empirically derived probabilities
once the variable accumulates over time for the scale . Thus, the drought indices ,𝑠 𝑆𝑃𝐼 𝑆𝑃𝐸𝐼
, , are obtained in the  following manner:𝐸𝐷𝐷𝐼 𝑎𝑛𝑑 𝑆𝑆𝐼

𝐷𝐼 𝐴
𝑖

𝑠( ) = 𝑊 −
𝐶

0
+𝐶

1
·𝑊+𝑐

2
·𝑊

2

1+𝑑
1
·𝑊+𝑑

2
·𝑊

2
+𝑑

3
·𝑊

3 ,  𝐸𝑞.  6( )

where refers to the drought index calculated for the variable . The values for the𝐷𝐼 𝑉
constants, based on ref. 77, are: , , ,𝐶

0
= 2. 515517 𝐶

1
= 0. 802853 𝐶

2
= 0. 010328

, , and . For , W=𝑑
1

= 1. 432788 𝑑
2

= 0. 189269 𝑑3 = 0. 001308 𝑃 𝐴
𝑖

𝑠( )≤ 0. 5

, and for , replace with and reverse the− 2 · 𝑙𝑛 𝑃 𝐴
𝑖

𝑠( )( ) 𝑃 𝐴
𝑖

𝑠( ) > 0. 5 𝑃 𝐴
𝑖

𝑠( ) 1 − 𝑃 𝐴
𝑖

𝑠( )
sign of .𝐷𝐼 𝐴

𝑖

𝑠( )
The drought indices were calculated for time scales of 1, 3, 6, 12, 24, and 36 months at a
monthly frequency for 2000–2023.

2.4. Temporal trends of drought indices

To determine if there are statistically significant positive or negative temporal trends for
the drought indices, we used the non‐parametric modified Mann‐Kendall test for serially
correlated data78. To determine the magnitude of the trend, we used Sen’s slope79. Sen’s
slope is less affected by outliers than parametric ordinary least squares (OLS) regression,
and as a non‐parametric method, it is not influenced by the distribution of the data. We
applied both methods for SPI, EDDI, SPEI, SETI, and SSI and six time scales, resulting in a
total of 30 trends. We then aggregated temporal trends for each ecoregion and land cover
type.

2.5. Vegetation productivity

We also used the MODIS product (MOD13A357), to calculate vegetation productivity, and
calculated anomalies of cumulative NDVI using zcNDVI50, which was derived from the
monthly time series of NDVI, with Equations 3, 4, 5 and 6. For vegetation productivity, we
selected the time scale that best correlates with annual net primary productivity (NPP)
across continental Chile. For this purpose, we calculated zcNDVI for time scales of 1, 3, 6,

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

https://www.zotero.org/google-docs/?Hv1POn
https://www.zotero.org/google-docs/?UQyZpO
https://www.zotero.org/google-docs/?thapSm
https://www.zotero.org/google-docs/?3l6CAa
https://www.zotero.org/google-docs/?l1onT2
https://www.zotero.org/google-docs/?1vL2og
https://www.zotero.org/google-docs/?Vwpm0I


and 12 months (in December) and compared it with the annual NPP. We obtained NPP from
MOD17A3HGF80. Based on this comparison, we selected six months because it resulted in
the highest R2 between zcNDVI and NPP, i.e. 0.31 for forest and 0.72 for shrubland (see Figs.
S1 & S2). We subsequently used zcNDVI with a time scale of 6 months and calculated it at a
monthly frequency for 2000–2023.

2.6. Drought impacts on vegetation productivity

For each land cover type, we analyzed the trend of vegetation productivity. To this end, we
identified areas with a persistent land cover over time to reduce the possibility that trends
in vegetation productivity may be influenced by changes in land cover. We examined the
correlation between drought indices and vegetation productivity across land cover types to
determine the extent to which soil moisture and water demand and supply affect
vegetation productivity.

We estimated pixel‐to‐pixel Pearson’s correlations between drought indices at time scales
of 1, 3, 6, 12, 24, and 36 months with zcNDVI. We extracted the Pearson correlation
coefficient corresponding to the time scale with the highest value. For each index, we then
generated two maps: 1) a raster with values of the time scales and drought index that
reached the maximum correlation (see Fig. S5), and 2) a raster with the magnitude of the
correlation between the drought index and vegetation productivity.

2.7. Drought impacts on land cover change
2.7.1. Land cover change

Following the FAO classification81, we classified native and planted forests as “forests”,
which represent natural and productive ecosystems dominated by large trees. To analyze
the land cover change, we use the IGBP scheme from the MCD12Q1 product. We regrouped
the 17 classes into ten macro‐classes, as follows: 1‐4 to forests (native forest and
plantations), 5‐7 to shrublands, 8‐9 to savannas, 10 as grasslands, 11 as wetlands, 12 and
14 to croplands, 13 as urban, 15 as snow and ice, 16 as barren, and 17 as water (see Table
S1). This resulted in a time series of land cover with ten macro‐classes for 2001‐2023. We
validated the land cover macro‐classes using a high resolution (30 m) land cover map for
2013‐201482. Our results showed a global accuracy of ~0.82 and a F1 score of ~0.66
(Supplementary Information, section S2).

We did not directly measure the change in land cover, but we analyzed it indirectly. A
decrease in one type of land cover leads to its replacement by another, and an increase in a
particular land cover class means it is replacing other types of covers. Thus, we calculated
the area for each land cover class in each ecoregion for 2001–2023. We then estimated the
temporal change in area for each land cover type and determined the statistical significance
(p‐value < 0.05) and magnitude of the trend, as described above.

To assess how water demand and supply and soil moisture affect variation in vegetation
productivity across various land cover types, we avoided analyzing areas that experienced
major land cover changes during the study period. To assess how zcNDVI varied
irrespective of land cover change, we developed a persistence mask for land cover, which
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only retains pixels for those whose land cover remained the same for at least 80% of the 24
years (Fig. 1d).

2.7.2. Relationship between land cover and drought trends

We evaluated changes in land cover across continental Chile with the Random Forest
algorithm and using drought indices at multiple time scales and temporal trends in road
density, burned area, and nighttime light emissions. We performed the analysis at the
sub‐basin scale, using a total of 485 river basins, which have a surface area between 0.906
and 24,408 km2 and a median area of 1,249 km2 (see Fig. S3/Table S4). For each basin, we
calculated the temporal trend per land cover, considering the proportion of the type
relative to the total surface of the basin. For each basin we extracted the average trend of all
drought indices and at time scales of 1, 3, 6, 12, 24, and 36 months. In the case of burned
area, we used as variables the total and the trend of burned area for 2002‐2023, and for
nighttime light emissions we used the average and the trend for 2012‐2023.

Prior to fitting models, we assessed multi‐collinearity among explanatory variables, i.e.,
drought indices, road density, nighttime light emissions, and burned area, with the variance
inflation factor (VIF). Because VIF values greater than five may affect the interpretation of
model results83, we excluded SPI from all subsequent models (see Fig. S6‐S11).

We used Random Forest models84, as they capture non‐linear relationships and minimize
overfitting. For each combination of time scale (1, 3, 6, 12, 24, and 36 months) and land
cover type (forest, grassland, shrubland, savanna, cropland, and barren land), we fitted a
model with the following explanatory variables: trends of each drought index (SPI, SPEI,
EDDI, SETI, and SSI), nighttime light emission (trends and averages), burned area (trends
and total area), and road density. We trained each model using 1,000 trees, setting the
minimum number of nodes per decision tree at five and the number of predictors per split
(boosting) to the square root of the total number of predictors. To account for uncertainty,
we trained all the models ten times using a resampling strategy (ten folds) in a
cross‐validation scheme. Finally, we evaluated model fit by calculating R², root mean square
error (RMSE), and variable importance. Variable importance identifies which variables
have a higher contribution to explaining model variation. We calculated variable
importance by permuting out‐of‐bag (OOB) data per tree and calculating the mean
standard error of the OOB data. After permuting each predictor variable, we repeated the
process for the remaining variables. We repeated this process ten times per model (ten
folds) to assess model fit while accounting for uncertainty in model performance.

2.8. Software

For downloading, processing, and analyzing spatio‐temporal data, we used the R
programming language for statistical computing and graphics85. For downloading ERA5L,
we used the {ecmwfr} package86. For processing raster data, we used {terra}87 and {stars}88.
For managing vectorial data, we used {sf}88,89. For the calculation of AED, we used
{SPEI}90,91. For mapping, we used {tmap}92. For data analysis and visualization, the suite
{tidyverse}93 was used. For the random forest modeling, we used the {tidymodels}94 and
{ranger}95 packages.
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3. Results
3.1. The Chilean matorral and Patagonian steppe increase atmospheric

water demand but decrease vegetation evapotranspiration

We found that the majority of the drought indices indicate that the temporal trends
(positive or negative) intensify over longer time scales (Fig. 2). For the Atacama Desert and
the Central Andean dry puna, we found a positive temporal trend for drought indices of
water supply (i.e., SPI and SSI), atmospheric water demand (i.e., EDDI), and vegetation
water demand (i.e., SETI). For the Chilean Matorral and Patagonian steppe, EDDI becomes
increasingly positive, while SPI, SPEI, SSI, and SETI become increasingly negative. This
reflects a critical scenario of drought, where a rise in temperature increases atmospheric
water demand, but actual evapotranspiration cannot increase due to a lack of water
availability. In the Southern Andean steppe, there is a positive temporal trend in AED (i.e.,
EDDI), but a negative temporal trend in water supply (i.e., SPI, SPEI, SSI). The negative
temporal trend in vegetation water demand (i.e., SETI) strengthens with longer time scales.
The Valdivian temperate forests show a negative temporal trend in water supply (i.e., SPI,
SPEI, and SSI) and a positive trend in both AED and ET, as shown by EDDI and SETI,
respectively. In this case, an increase in AED implies an increase in ET, likely due to a
greater availability of water, unlike in the Chilean Matorral and Patagonian steppe. The
vegetation water demand (SETI) in the Magellanic subpolar forests does not exhibit a
significant trend over any given time scale, while AED and water supply become
increasingly positive over longer time scales. The trends of drought indices in the
Patagonian steppe exhibit a similar behavior to the Chilean Matorral, albeit less extreme.

Figure 2. The Chilean Matorral and Patagonian steppe show a higher increase in atmospheric water
demand and a decrease in vegetation evapotranspiration, which becomes stronger at longer time
scales. Temporal trends in drought intensity over multiple time scales for indices associated with water
supply (SPI, SPEI, SSI), atmospheric water demand (EDDI) and vegetation water demand (SETI) across
continental Chile for 2000‐2023. SPI is the standardized precipitation index, SPEI is the Standardized
Precipitation Evapotranspiration Index, SSI is the Standardized Soil Moisture Index, EDDI is the Evaporative
Demand Drought Index, and SETI is the Standardized Evapotranspiration Index. Drought indices were
aggregated per region for visualization. All temporal trends are statistically significant (p < 0.05).
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3.2. Vegetation productivity has strongly decreased in the Chilean
matorral and the Patagonian steppe

Figure 3. The Chilean matorral and Patagonian steppe have experienced the greatest decline in
vegetation productivity. Spatial (a) and temporal (b) variation in vegetation productivity (zcNDVI) across
continental Chile for 2000‐2023. In (a), green corresponds to areas with a positive temporal trend in zcNDVI,
and red corresponds to a negative temporal trend in zcNDVI. White represents areas without persistent land
cover, or areas where there is no statistically significant trend in zcNDVI. All temporal trends shown are
statistically significant (p < 0.01). In (b), red areas correspond to negative and green to positive zcNDVI
anomalies. Temporal trends in zcNDVI were estimated with the non‐parametric modified Mann‐Kendall test
for serially correlated data.

We found contrasting temporal trends in vegetation productivity for 2000‐2023 across
ecoregions (Figs. 3 & S4). While the Atacama desert does not exhibit significant temporal
trends in vegetation productivity, that of the Chilean Matorral, Patagonian steppe, and the
Southern Andean steppe exhibit negative trends of ‐0.023, ‐0.016, and ‐0.006 (z‐score per
decade), respectively. In contrast, the Central Andean dry puna, Valdivian temperate
forests, and Central Andean dry puna show positive temporal trends in zcNDVI ranging
from 0.01 to 0.03 (z‐score per decade). The Chilean Matorral reached its lowest point from
2019 to 2022, while the Patagonian steppe has experienced an increasingly negative trend
in vegetation productivity since 2022.

3.3. Forest, savanna, and shrubland exhibit the highest change in surface
area across ecoregions

We observed significant changes in land cover across continental Chile (Fig. 4). The forest
surface area increased in the Chilean matorral and in the Valdivian temperate forest at
rates of 78 and 316 km² yr⁻¹, respectively. Grassland surface area has diminished in the
Southern Andean steppe (‐19 km² yr⁻¹), yet has increased in the Patagonian steppe (90
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km² yr⁻¹). Savanna has decreased rapidly in the Chilean matorral at a rate of ‐271 km² yr⁻¹
and in the Valdivian temperate forest at a rate of ‐276 km² yr⁻¹, but has increased at a rate
of 133 km² yr⁻¹ in the Magellanic subpolar forest. Among land cover types, shrubland
surface area has increased the most in the Chilean matorral (160 km² yr⁻¹). Barren land
has increased at moderate rates in the Central Andean dry puna (36 km² yr⁻¹) and the
Southern Andean steppe (50 km² yr⁻¹), but has diminished in the Magellanic subpolar
forest (‐81 km² yr⁻¹).

Figure 4. Land cover is shifting dynamically across continental Chile. Temporal trends in absolute (a) and
relative (b) land cover change in surface area across continental Chile for 2001‐2023. Temporal change in
surface area for each land cover was estimated with Sen’s slope; zero values indicate no change, curves
without values show no statistically significant trend, and red and blue points indicate maximum and
minimum values, respectively. Land cover classes with no values indicate that it is not present in a given
ecoregion. Relative land cover change was estimated within each ecoregion.

3.4. Drought impacts on vegetation productivity are strongest in the
Chilean Matorral and Valdivian temperate forest

Our results indicate that drought impacts on vegetation productivity are highest in the
Chilean Matorral and Valdivian temperate forests across all land cover types, except forest
(Figs. 5 & S5 and Table 1). For time scales of 6 and 12 months, SETI and SSI have the
strongest positive correlation with vegetation productivity among the land cover types. We
found that vegetation productivity in grassland and savanna in the Patagonian steppe had
higher correlations with SPI and SSI over a time scale of 12 months than other drought
indices. Further, we found a positive, statistically significant relationship between
vegetation productivity in the Atacama desert and drought indices of 12 months of water
supply and vegetation water demand (SPI, SPEI, SETI, and SSI) yet is a negative relationship
between vegetation productivity and atmospheric water demand (EDDI) over a time scale
of 12 months. All drought indices show a positive correlation with vegetation productivity
in the Central Andean dry puna, particularly for the drought indices of water supply (SPI,
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SPEI, and SSI) at a time scale of 24 months and vegetation water demand (SETI) at a time
scale of 36 months. For the Southern Andean steppe, SETI at a time scale of 24 months
showed the highest correlation with vegetation productivity in savannas, followed by the
EDDI at a time scale of 24 months.

Our analysis also revealed that water demand and supply differentially affected the time
scales at which vegetation productivity of land cover types within each region was most
impacted by drought (Figs. 5 & S5 and Table 1). While the spatial variation in the
relationship between drought intensity and vegetation productivity was consistent across
drought indices, the drought indices that captures water supply via soil moisture
(Standardized Soil Moisture Index; SSI), and via vegetation water demand (Standardized
Evapotranspiration Index, SETI) tended to show a stronger correlation with vegetation
productivity over larger areas than the other drought indices (Fig. 5 & Table 1).

Figure 5. Drought impacts on vegetation productivity shift across continental Chile. Pearson’s
correlation coefficient was used to estimate the direction and magnitude of the relationship between drought
severity and vegetation productivity for each index for 2000‐2023. We show Pearson correlation coefficients
for the time scale (3 ‐ 36 months) at which they reach their maximum absolute value. In Chile, areas in white
indicate no statistically significant correlation (p‐value>0.05). SPI is the standardized precipitation index, SPEI
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is the Standardized Precipitation Evapotranspiration Index , SSI is the Standardized Soil Moisture Index, EDDI
is the Evaporative Demand Drought Index, and SETI is the Standardized Evapotranspiration Index.

Table 1. Time scale at which drought indices (EDDI, SPI, SPEI, SSI, and SETI) exhibit the maximum absolute

correlation with vegetation productivity (zcNDVI) across continental Chile. Values in each cell indicate the time

scale in months (1, 3, 6, 12, 24, and 36 months) at which the maximum absolute correlation between a drought

index and zcNDVI occurs, and the color indicates the strength of the correlation. Cells without values signify

that either the correlation was not statistically significant, or that a given land cover type is not present in a

particular ecoregion.

Drought strongly impacts land cover distribution for shrublands

Figure 6. Shifts in shrubland areas are most sensitive to drought severity at time scales of three and 12
months. R2 values were estimated with random forest models for each land cover class and time scale.

Our random forest models explain between 32‐79% of variation in the temporal trend of
land cover change across continental Chile (Fig. 6). These results highlight the importance
of considering water supply (e.g., SPEI and SSI) and demand (e.g., SETI), as drought indices
associated with both aspects of the water balance had high importance values across most
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ecoregions and land cover types. The variation in the time scale of drought indices with
high importance values may suggest that different types of vegetation are not equally
sensitive to droughts of similar intensities (Fig. 6).

Our random forest models show that the drought indices explain between 71 and 78% of
the variation in temporal trends of land cover surface change for shrublands across all
ecoregions (Fig. 6). Further, our random forest models explain approximately 58 to 78% of
the variation in the temporal trend of land cover change for croplands. In the case of other
land cover types, the random forest models account for approximately 33‐59% of the
variation in temporal trends of land cover change, with drought indices explaining less
variation in land cover change for forests than other land cover types (Fig. 6).

Figure 7. Shifts in water supply and demand underlie land cover change. Variable importance of
multi‐scalar drought indices and human activity (i.e., night light emissions, road density, and fires) estimated
by Random Forest models that explain variation in land cover change across ecoregions in continental Chile.
Random Forest models were fitted for each combination of land cover type and time scale (1, 3, 6, 12, 24, and
36 months). SPEI is the Standardized Precipitation Evapotranspiration Index, SETI is the Standardized
Evapotranspiration Index, SSI is the Standardized Soil Moisture Index, Night Lights(*) is the average nighttime
light emissions for 2012‐2023, Burned Area is the trend in surface burned for 2002‐2023, and Burned Area(*)
is the total surface affected by fires between 2002 and 2023. Note that we only show the two explanatory
variables with the highest variable importance values for each land cover type and time scale.

We found the highest R2 for the random forest model explaining variation in the temporal
trend of land cover change for shrublands, followed by that for cropland and barren land
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(Fig. 6 & Figs. S12‐S17). Our models most frequently identified SETI and SSI as the drought
indices that explained the highest amount of variation in land cover change (Fig. 7).
Similarly, we found that nighttime light emissions, a proxy for human population and built
structure density, explained relatively more variation in land cover change of barren land,
followed by SPEI at time scales of 3 and 6 months (Fig. 7).

Figure 8. Drought intensity drives land cover change, but not for all cover types. Response of land cover
change in response to water demand and supply at multiple time scales and human activity (i.e., night light
emissions, road density, and fires) across ecoregions in continental Chile. SPEI is the Standardized
Precipitation Evapotranspiration Index, SETI is the Standardized Evapotranspiration Index, SSI is the
Standardized Soil Moisture Index, Night Lights(*) is the average nighttime light emissions for 2012‐2023, and
Burned Area(*) is the total surface affected by fires between 2002 and 2023. For SPI, SPEI, SETI, and SSI,
negative values are associated with more severe drought. Fitted lines are smoothed response curves in each
ecoregion estimated with Random Forest models. Note that we only show the two explanatory variables with
the highest variable importance values for each land cover type and time scale.

In general, our results indicate that increases in SPEI, SETI, and SSI were associated with
non‐linear increases in land cover change for most types of land cover (Fig. 8). We
observed that shrublands are sensitive to both increases and decreases in SETI and SSI,
reaching a point of equilibrium around normal levels of drought intensity, i.e., values close
to zero. Surprisingly, we found that the temporal trend in the land cover change of forests
was stable for both SPEI and SETI for most ecoregions, only increasing non‐linearly with
increasing SSI. In the case of bare soil, we found a negative relationship between the
temporal trend in land cover and nighttime light emissions, such that areas with an
increase in barren land are associated with a low amount of nighttime light emissions (Fig.
8). We found that SETI and SPEI had contrasting impacts on land cover change of
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grasslands, which increased in response to increasing SPEI yet decreased in response to
increasing SETI.

4. Discussion
4.1. Temporal trends in water supply and demand

We found that the Atacama desert, Central Andean dry puna, and the Magellanic subpolar
forests experience an increase in water supply (SPI, SSI), as well as an increase in
atmospheric and vegetation water demand (EDDI, SETI). However, in the Magellanic
subpolar forests, we found no evidence of either a significant increase or decrease in SETI
across time scales. Also, we found a significant decrease trend in water supply (SPI, SPEI,
and SSI) across the Southern Andean steppe, Chilean Matorral96,97, Valdivian temperate
forests, and Patagonian steppe, accompanied by an increase in atmospheric water demand
(EDDI). Our results indicate that water supply and atmospheric demand tend to decrease
or increase more strongly over longer time scales, a trend that is consistent with the
progressive intensification of drought severity across much of Chile, and that has been
observed in other regions facing long‐term droughts98,99. Simultaneously, we observed a
divergent trend between EDDI and SETI. In the majority of ecoregions, a rise in
atmospheric water demand (EDDI) typically leads to a rise in vegetation water demand
(SETI). However, in the ecoregions most affected by drought (Figs. 3 & 5), i.e., the Chilean
matorral and the Patagonian steppe, we found that an increase in atmospheric water
demand is accompanied by a decrease in the water demand of vegetation. Together, our
findings demonstrate a persistent drying trend in the Chilean Matorral, the Patagonian
steppe, and the Southern Andean steppe. We attribute this trend to a simultaneous
decrease in precipitation and an increase in atmospheric evaporative demand, leading to a
decrease in the water demand by vegetation in water‐limited areas 100.

4.2. Temporal trends in vegetation productivity

The consequences of the persistent drying trend for ecosystems throughout continental
Chile are manifold. First, the prolonged hydrological drought, i.e., precipitation deficit, has
reduced groundwater storage (SSI; ref. 84), leading to a steady decline in vegetation
productivity (zcNDVI) since 2000 across the Patagonian steppe, the Southern Andean
steppe, and the Chilean Matorral, which reached its lowest level between 2020 and 2022
and could be due to either a loss of biomass or browning in ecosystems1. Recent studies
examining natural and productive ecosystems101–103 have attributed the decline in
vegetation productivity with declines in soil moisture and increases in evapotranspiration.
Second, the sharp decline in vegetation productivity in the Chilean Matorral and Valdivian
temperate forest ecoregions showed that grasslands and shrublands respond to shifts in
water supply over longer time scales (12 months) than savannas and croplands (6 months).
Also, in the Valdivian temperate forest ecoregion, which has a large forested area,
vegetation productivity responded to soil moisture (SSI) and vegetation water demand
(SETI) most strongly at 12 and 36 months, respectively. This result is consistent with recent
studies showing that progressive, long‐term water deficits in central Chile have triggered
forest browning and declines in native forest productivity1,45,104. While our analysis does not
distinguish between native and planted forests, the latter of which are considered to be
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more drought tolerant in central and southern Chile105, we show that forest area declines
more sharply in response to increasing water demand due to rising temperatures (EDDI)
than decreasing water supply (e.g., SPI, SSI; refs. 106,107), which may have cascading impacts
on multiple facets of forest diversity 108,109.

Moreover, the strengthening of the correlation between vegetation productivity and water
supply (SPI, SPEI, SSI) or demand (EDDI, SETI) over multiple time scales (up to 36 months)
and across land cover types (Fig. 5) demonstrates the impacts of climate change on the
water balance across continental Chile. These impacts may extend beyond vegetation
productivity, as reduced soil moisture in central Chile and the western United States has
increased wildfire activity110,111, which is a growing concern in Chile and may be further
exacerbated by extensive plantations of highly flammable tree species, e.g., Eucalyptus spp.
and Pinus spp.112. Lastly, we found that the decline in the vegetation productivity of
croplands is largely due to a decrease in the water supply and vegetation water demand to
a greater extent than to an increase in atmospheric water demand113, causing a decline in
water availability. This is consistent with evidence that more water‐intensive crops have
replaced less water‐intensive crops in central Chile, leading to an increase in water
extraction from rivers or groundwater 114,115.

4.3. Drought impacts on land cover

We found evidence that temporal decreases in water supply (SPEI, SSI) and decreases in
vegetation water demand (SETI) are driving shifts not only in vegetation productivity but
also in temporal trends of land cover change across most of continental Chile. Despite
differences in drought tolerance (e.g., shrublands, grasslands, and savannas), our results
provide evidence that the area of most vegetation‐dominated land cover types have been
affected by water deficits, albeit to varying degrees (Fig. 8). Additionally, our results
suggest that water deficits, to a greater extent than factors associated with human activity,
have affected temporal trends in land cover change for most land cover types (e.g.,
croplands, forests, and infrastructure). Further, across all ecoregions, we found that the
total surface of burned area or the temporal trend of burned area explained relatively more
variation in the temporal trend of land cover change for cropland than drought indices, as
well as other variables associated with human activity (Fig. 7). Due to current legal
incentives, infrastructure for housing or commercial use or agriculture often replaces
native forests that have been burned116. The reason for the non‐linear increases in forest
area in response to burned area across most ecoregions (Fig. 8) is unclear. One possible
explanation is that forest area has increased following fires, either due to forest recovery46

or the establishment of forest plantations 117.

4.4. Study limitations

Our analysis of the impacts of water supply and demand on vegetation productivity and
land cover change has several limitations. One of the principal limitations of this study is
the use of secondary information. For instance, we used estimates of water supply and
demand, such as ERA5L and MODIS, which, despite their improved precision, suffer from
biases and uncertainties118,119 in different areas or climatic conditions. In this study, we
compared the ERA5L data with local climatic stations (see Table S2) to estimate bias and
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uncertainty, but future studies with a more local focus will need to improve the precision of
these products by, for example, merging in situ with ERA5L120. We used zcNDVI50 (MODIS)
as a proxy for vegetation productivity, which has proven to be a good estimate of NPP (see
Fig. S1 and S2), but its quality varies between different types of vegetation 121.

A second limitation is that we used products that estimate land cover types using
classification models, which are subject to quality errors122,123. In addition, in our case we
used macro‐classes of land cover, where, for example, the different types of forests (e.g.,
monoculture, native forest) were pooled into the same land cover type. This approach may
hinder our ability to understand the effects of drought on the various subclasses within
each land cover class. In terms of cropland, we could not distinguish between rainfed and
irrigated areas using macro classes. However, in this study, we aimed to provide a broad
overview at a large spatial scale, but acknowledge that using sub‐classes of land cover
types at finer spatial resolutions may help to better understand underlying mechanisms.

In our analysis of the impacts of drought intensity on temporal trends of land cover change,
we integrated proxies for human activity that also may affect land cover change. However,
attributing land cover change to human activity and decisions is complex when using earth
observation tools. While earth observation tools can analyze land cover change, whether a
land cover type changes likely depends on a multitude of social and economic factors that
are challenging to quantify124,125 and necessitate the integration of social, natural, and
geographic information sciences.

5. Conclusion

Our results show that long‐term variations in water supply and demand have consistently
induced widespread, multi‐dimensional impacts on the vegetation productivity and on the
temporal trends of changes in land cover across a broad range of ecoregions in continental
Chile. While prolonged droughts may directly cause shifts to more drought‐tolerant
vegetation types, such as shrublands, we also found that areas affected by fires were
associated with increases in the area of croplands, highlighting the importance of
socio‐economic factors in shaping land use change dynamics. Our study extends current
understanding of drought impacts by demonstrating how their multidimensionality
emerges over multiple time scales and across land cover types, which can contribute to
developing context‐specific adaptation strategies for agriculture, biodiversity conservation,
and natural resource management.

Data availability

The codes generated during the current study are available in the GitHub repository,
https://github.com/FSEQ210022/drought_vegetation . The datasets generated and/or
analyzed during the current study are available in the Zenodo repository,
https://doi.org/10.5281/zenodo.10359547 .
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