Method for Assigning Emission Factors to Mapping Units Based on Modelling the Spatial Structure and Functions of Peatland Ecosystems EGU25-20654, BG8-13

Tatiana Minayeva¹, Timofey Orlov¹, Gennady Suvorov¹, Oxana Cherednichenko¹, Nyam-Osor Nandintsegtseg², Cristina Rengifo Faiffer³, Livio Pierro⁴, and Matvey Tarkhov⁵

¹Care for Ecosystems UG, Goerlitz, Germany (<u>tatiana.minayeva@care-for-ecosystems.net</u>) ²Wildlife Science and Conservation Center of Mongolia, Ulaanbaatar, Mongolia (<u>Nandintsetseg@wscc.org.mn</u>) ³Michigan Technological University, Houghton, USA/Wetlands International LAC (<u>mrengifo@mtu.edu</u>) ⁴Face the Future, Wageningen, The Netherlands (<u>I.pierro@facethefuture.com</u>) ⁵Wetlands International, Ede, The Netherlands (matvey.tarkhov@wetlands.org)

How are peatland **rewetting** projects evaluated in line with VCM standards?

VCS Methodology

VM0036

Methodology for Rewetting Drained Temperate Peatlands

- 1. Project site Stratification.
- 2. Assigning GESTs to the land classes (no scale limits).
- 3. Assigning Emission Factors to GESTs.
- 4. Evaluating Area and Emissions by GESTs in two scenarios.
- 5. Calculating Emission Reductions between two scenarios.

Can we evaluate a peatland **restoration** project with available VCM standards?

1. Broader landscape regulation of peatland hydrology and biogeochemistry.

2. High peatland heterogeneity/ecosystem diversity across various spatial scales, but low higher plant species diversity.

3. The GHG emission is controlled at the micro-level and must be evaluated at a larger scale.

Turning an ecosystem restoration project into a carbon project

- Problem 1 Landscape Approach:
- Project boundaries
- List of methodologies
- Absence of process-based indicators

Turning an ecosystem restoration project into a carbon project

Problems 2 and 3: Heterogeneity and upscaling

- Landscape functional units vs vegetation-driven classes
- Hierarchical classification of functional units
- Upscaling ecosystem characteristics from the measurement scale to the evaluation scale

Hierarchical mire landscape classification

The landscape		Description	Vegetation unit	Scale (m ²)
	Macrotope	The mire complex (or system; several merged mire massifs)	Biogeographic zone	10 ⁵ –10 ⁹
	Mesotope	The mire massif (separate raised bog, fen, <i>etc</i> .)	Mire massif type	10 ² -10 ⁷
	Microtope	Homogeneous element of landscape heterogeneity within the mire massif (hummock-hollow complex, margin, sedge mat, Sphagnum carpet)	Complex of phytocoenoses	10 ² -10 ⁶
T2 T1 A2 T1 Depeto-Schagnetum faci Nartheci-Schagnetum papilos 3 Caricotum rotratae 4 Nartheci-Schagnetum papilos, phase Schagnum tenellum	Microform (nanotope)	Hummock, hollow, pool, ridge	Phytocoenosis	10 ⁻¹ –10 ¹
	Vegetation mosaic	Microcoenosis, tussock, <i>etc</i> .	Microcoenosis	10 ⁻² –10 ⁻¹

Figure 3. The elements of hierarchical mire classification (after Masing 1974 and Lindsay et al. 1988).

Mires and Peat, Volume 19 (2017), Article 01, 1–36, http://www.mires-and-peat.net/, ISSN 1819-754X © 2017 International Mire Conservation Group and International Peatland Society, DOI: 10.19189/MaP.2013.OMB.150

Hierarchical mire landscape classification – for upscaling

Orsha peatland, 650 sq. km, Tver, Russia

EGU25-20654, BG8-13, 02-05-2025 Minayeva et al.

Tver Oblas

Experiment on Hierarchical Upscaling of Ecosystem Function Parameters: assigning the plot

Experiment on Hierarchical Upscaling of Ecosystem Function Parameters: mapping

EGU25-20654, BG8-13, 02-05-2025 Minayeva et al.

Seven types of microform, 12 types of facias, three types of peatland sites

Shooting: DJI Mavic 3 multispectral

Classification: Random forest – a machine learning algorithm for classification

- Gradient of soil temperature and moisture (0, 5, 10, 15 cm).
- Water table 4.
- Photosynthetically Active Radiation (PAR), 5. air temperature and humidity of air Minikin QTH (EMS Brno, Чехия)
- CO2 and CH4 fluxes by chambers «LI-6. 7810» (Li-Cor, США)

Experiment on Hierarchical Upscaling of Ecosystem Function Parameters: vegetation cover and phytomass

A September

•	камеры
Тро	ективное покрытие, %
	1
	50
	60
	70
	85
	90
	95

Facias: 1 - open peat 2 - birch-willow-reed 3 - birch-grass 4 - tussock cotton grass 5 - cotton grass 6 - willow-grass 8 - common cotton grass 9 - juncus - common cotton grass 10 - reeds 11 - reed mosses 12 - willow-reed-sphagnum

10 N

213 - 250 250 - 283 283 - 336 336 - 371 371 - 397 397 - 462 462 - 546 546 - 640 Facias: 1 - open peat 2 - birch-willow-reed 3 – birch-grass 4 - tussock cotton grass 5-cotton grass 6 – willow-grass 7 – juncus-grass 8 - common cotton grass 9-juncus - common cotton grass 10 - reeds 11 – reed mosses 12 - willow-reed-sphagnum 10

Биомасса фаций, г/м2 25 - 71 71 - 213

Experiment on Hierarchical Upscaling of Ecosystem Function Parameters: water table (cm), soil moisture (%), soil temperature 0/10 difference °C September

Experiment on Hierarchical Upscaling of Ecosystem Function Parameters: NEE tCO₂, and methane emission kg*ha for the growing season *157 days

Microcenosis number	1	2	3	4	5	6	7	8	9			
	Juncus effusus -			Betula spp		Eriophorum	Eriophorum			EF for plot (tCO2-		
	Calamagrostis	Eriophorum	Phragmites	Polytrichum		angustifolium	angustifolium			eq/ha/growing		
Microcenosis name	epigeios	vaginatum	australis	spp.	Juncus effusus	wet	dry	Bare peat	ditch	season)		
Input of microcoenoses												
to the emission factor of	0.65	0.22	1 1 2	0.94	0.04	0.27	0.57	0.94	0.00	2.90		
the plot (tCO2-eq/ha	0,05	0,23	1,15	0,84	0,04	-0,27	-0,57	0,84	0,00	2,89		
/growing season)												
IPCC emission factor for CO2 for peatland managed for extraction, t C-CO2 ha-1 year-1 (95% confidence interval 1.1-4.2)												
Emission from ditches - not included in the plot, (tCO2-eq/ha/growing season) 7,59												
Cumulative for peatland site type, including ditches												

Comparing Eddy-covariance measurements with chamber measurements within the footprint

Parameter	Type of Equipment	Model and Country of Origin
CO2 and H2O Concentrations	Closed-path Gas Analyzer	LI-7200 (USA)
CH4 Concentration	Open-path Gas Analyzer	LI-7700 (USA)
Photosynthetically Active Radiation (PAR)	Sensor	LI-190 (USA)
Wind Speed and Direction	3-D Sonic Anemometer	R3-50 (Gill Instruments, UK)
Soil Temperature	Sensor	Campbell (USA)
Soil Heat Flux	Sensor	HFP01SC (Hukseflux, Netherlands)

Footprint model calculated after: Kljun, N., P. Calanca, M.W. Rotach, H.P. Schmid, 2015: A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geosci. Model Dev., 8, 3695-3713. <u>doi:10.5194/gmd-8-3695-2015</u>

	growing season		growing season winter year		growing season		winter		year		EF		
	tC-CO2/ha	kgCH4 ha	тС-СО2/га	кгСН4 га	TC-CO2*ha-1	kgCH4 ra	TCO2eq*ha-1	CH4, TCO2-eq*ha-1	тCO2*ha-1	CH4, TCO2- eq*ha-1	тCO2*ha-1	CH4, TCO2- eq*ha-1	TCO2eq*ha- 1*year-1
Tower	1,60	17,5	0,3	2,3	1,9	19,8	5,9	0,47	1,1	0,06	6,9	0,5	7,5
chambers	0,9	10,0	0,3	2,3	1,2	12,3	3,5	0,27	1,1	0,06	4,5	0,3	4,8

What method should be chosen to develop a specific emission factor at a project level?

Legend

National boundary
Province boundary
Project area

- Forest
- Lake
- River
- Project areas

Legend

Project area Vegetation classification 1. Fen on permafrost

6. Shalow peat wet meadows

7. Spring, riparian, lacustrian near water peatlands

8. Open water on peat

9. Overgrased fen with degraded or without permafrost

12. Deciduous forest on peat under degradation

13. Shalow peat wet meadows under degradation

15. Degraded wet meadows on sod-peaty soils

19. Flooded open peatlands

24. Arable lands on peat

25. Construction on peat

27. Meadow

30. Open water on mineral backgrounds

35. River and lake open and partly open mineral ground

34. Dried out fresh and salty lakes on mineral soil

Upscaling approach to other projects: Mongolia and Peru

Khurkh EDDY station

The eddy covariance station was set up at 48°18'27.75" N, 110°20'43.12" E, on a representative peatland surface in Khurkh Valley. The primary eddy covariance system included an IGRASON Campbell Scientific, Inc., USA unit, which integrates a 3D sonic anemometer and an open-path infrared CO₂ H2O gas analyser, mounted at a height of 2.85 meters. To complement the atmospheric measurements, radiation and precipitation sensors were installed. Additionally, soil sensors were placed at depths of 5 cm, 20 cm, and 50 cm to monitor temperature and moisture levels.

The footprint climatology for the Khurkh eddy station Khentii province, Mongolia, for Jan to April 2025

Cumulative footprint areas (50%, 70%, 80%, 90% contours) were mapped. Dominated by Land Class 4 (~60.3% contribution to fluxes).Small contributions from Land Class 1 (~27.7%) and other classes.

120 -

- The first graph illustrates a declining trend in daily average CO_2 concentration (mg/m³) from late January to mid-April, with a regression line indicating a decrease of approximately 0.96 mg/m³ per day (R² = 0.454), likely reflecting increased photosynthetic activity and seasonal warming.
- The second graph shows a clear upward trend in water vapor (H₂O) concentration (g/m³), increasing by about 0.019 g/m³ per day (R² = 0.508), suggesting rising humidity levels associated with warmer temperatures and possibly higher evapotranspiration.
- The third graph compares air temperature at 2 meters with soil temperatures at the surface, 20 cm, and 50 cm depths, all showing a gradual warming trend; the air and surface temperatures fluctuate more strongly than those at depth, indicating greater stability in subsurface thermal conditions.

Thank you! Join us!

Tatiana.minayeva@care-for-ecosystems.net

	Ν										
	Microcenosis	1	2	3	4	5	6	7	8	9	
		Juncus									
		effusus -	Eriophoru		Betula spp		Eriophorum	Eriophorum			
	Microcenosis	Calamagrost	m	Phragmite	Polytrichum	Juncus	angustifoliu	angustifoliu			
	name	is epigeios	vaginatum	s australis	spp.	effusus	m wet	m dry	Bare peat	ditch	
					slight						
		small			elevation of						
		tussoks and		flat	the canal					Drainage	ć
	Nanorelief	flat surface	hummok	surface	edge	hummok	depression	flat surface	flat surface	channel	
			Abandone	Abandone		Abandone					
	Disturbance	Abandoned	d milled	d milled	Abandoned	d milled	Abandoned	Abandoned	Abandoned	Drainage	č
	type	milled field	field	field	milled field	field	milled field	milled field	milled field	channel	
	Peat depth	60	50	60	70	40	40	60	60	NA	
	Peat										
	decompositio										
	n degree	50-60	50-60	50-60	50-60	50-60	50-60	50-60	50-60	NA	
Total	Averaged for										
cover,%	july	53	98	27	47	67	79	60	0	NA	-
Total											
cover,%	Min	40	98	15	10	60	60	40	0	NA	
Total											
cover,%	Max	70	98	35	80	80	98	70	0	NA	
Herb layer	Averaged for										
cover,%	july	53	98	27	18	67	79	60	0	NA	
Herb layer											
cover,%	Min	40	98	15	10	60	60	40	0	NA	
Herb layer											
cover,%	Max	70	98	35	25	80	98	70	0	NA	
Herb layer	Averaged for								_		
hight,%	july	70	65	62	73	72	62	32	0	NA	

Table 1 Catalogue of microforms (microcoenoses, used for large-scale mapping and chamber measurements)

	N										
	Microcenosis	1	2	3	4	5	6	7	8	9	
Herb layer											
hight,%	Min	60	55	55	60	50	60	25	0	NA	
Herb layer											
hight,%	Max	80	70	70	100	85	65	40	0	NA	
Moss layer	Averaged for										
cover, %	july	0	1	43	65	0	0	21	0	NA	
Moss layer											
cover, %	Min	0	1	40	55	0	0	1	0	NA	
Moss layer											
cover, %	Max	1	1	50	80	0	0	60	0	NA	
Litter	Averaged for										
cover, %	july	90	60	37	42	73	57	62	0	NA	
Litter											
cover, %	Min	85	60	30	30	70	50	50	0	NA	
Litter											
cover, %	Max	95	60	40	50	80	60	70	0	NA	
Undrgrowt	Averaged for										
h cover, %	july	0	2	1	47	0	0	0	0	NA	
Undrgrowt											
h cover, %	Min	0	0	0	30	0	0	0	0	NA	
Undrgrowt											
h cover, %	Max	0	5	3	60	0	0	0	0	NA	
Open	Averaged for										
water, %	july	0	0	0	0	0	20	0	0	NA	
Open											
water, %	Min	0	0	0	0	0	0	0	0	NA	
Open											
water, %	Max	0	0	0	0	0	60	0	0	NA	<u> </u>
Bare peat,	Averaged for										
%	july	0	0	25	0	0	0	8	100	0	1

	N										
	Microcenosis	1	2	3	4	5	6	7	8	9	
Bare peat,											ĺ
%	Min	0	0	15	0	0	0	5	100	0	
Bare peat,											l
%	Max	0	0	40	0	0	0	10	100	0	
Vascular											Ì
plants											l
biomass,											l
g/sq.m	Avg	471,43	1895,50	118,67	261,95	1147,23	383,75	420,38	0,00	NA	
Vascular											l
plants											l
biomass,											l
g/sq.m	std	131,82	751,96	35,38	152,08	360,43	115,17	153,02	0,00	NA	
Vascular											l
plants											l
biomass,											l
g/sq.m	Max	675,2	2651,1	159,3	548,5	1577	574,7	611,4	0,00	NA	<u> </u>
Vascular											l
plants											l
biomass,											l
g/sq.m	Min	289,8	1027,3	75,8	133,6	599,4	248,8	266,9	0,00	NA	
Mosses											l
biomass,											l
g/sq.m	Avg	0,00	7,22	82,60	234,63	4,25	1,06	1,91	0,00	NA	
Mosses											l
biomass,											1
g/sq.m	std	0,00	13,78	81,49	116,40	9,79	2,60	4,09	0,00	NA	
Mosses											i
biomass,							_		_		i
g/sq.m	Max	0	34,398	244,608	386,022	24,206	6,37	10,192	0,00	NA	i i

	Ν										
	Microcenosis	1	2	3	4	5	6	7	8	9	
Mosses											
biomass,											
g/sq.m	Min	0	0	17,836	49,686	0	0	0	0,00	NA	
Mortmass,											
g/sq.m	Avg	168,40	1298,63	44,93	14,33	925,17	626,65	276,50	0,00	NA	
Mortmass,											
g/sq.m	std	111,79	539,57	26,72	13,14	363,70	203,07	132,38	0,00	NA	
Mortmass,											
g/sq.m	Max	379,4	2221,2	77,7	36,4	1315,7	1039,5	482	0,00	NA	
Mortmass,											
g/sq.m	Min	56,6	791,2	10,1	3,7	522,5	515	153,5	0,00	NA	
Litter,											
g/sq.m	Avg	625,75	416,39	171,99	271,57	390,69	397,91	1/1,99	0,00	NA	
Litter,		162.10	222.46	05.05			470.00	04.56	0.00		
g/sq.m	sta	162,19	233,16	95,25	155,55	1/1,55	179,23	94,56	0,00	NA	
Litter,	Mari	040.04	654.926	200.004			710 000	221.24	0.00	NIA	
g/sq.m	iviax	840,84	654,836	300,664	481,572	535,08	/10,892	331,24	0,00	NA	
Litter,	N /1:	207 400	100 553	77 71 4	57.22	101 02	210 21	C0 70C	0.00	NIA	
g/sq.m	IVIIN	397,488	188,552	//,/14	57,33	101,92	210,21	68,796	0,00	NA	
	Averaged for	-			-		-	-	-		
AP TO/10	the season	0,23274331	-0.222001	0 3033306	0,20200034	-0.210005	0,27775140	0,29009598	0,37433732	ΝΔ	
			-0,232001	0,3023330		-0,215005					
		0 38069702		_	0 42504603		0 42786848	0 42915351	0 61101710		
ΔR T0/10	Min	4	-0.450592	0.4293973	5	-0.31839	4	7	1	NA	
		-	-,		-	-,	-	-	-		
		0,05282087		-	0,06855970		0,15711399	0,09349937	0,13769755		
ΔR T0/10	Max	3	-0,132381	0,1069294	7	-0,112384	7	7	7	NA	
	BWL		·								
BWL	averaged	-35	-29,4	-37	-39,8	-24,6	-24,6	-43,4	-39,8	NA	
BWL	Min	-50	-50	-60	-70	-40	-40	-61	-70	NA	

Microcenosis 1 2 3 4 5 6 7 8 9 BWL Max -20 -10 -10 -20 0 0 -11 -10 NA Peat Averaged for g/(cm3) Averaged for the season 0,3 0,3 0,3 0,2 0,3 0,3 0,2 0,3 0,3 0,2 0,3 0,3 0,2 0,3 0,3 0,2 0,3 0,3 0,2 0,3 0,3 0,2 0,3 0,3 0,2 0,3 0,3 0,2 0,3 0,3 0,3 NA Peat Min 0,3 0,2 0,3 0,2 0,2 0,2 0,2 0,3 NA Peat Min 0,3 0,2 0,3 0,2 0,2 0,2 0,2 0,3 NA Peat Min 0,3 0,2 0,3 0,2 0,2 0,2 0,2 0,3 NA	
BWL Max -20 -10 -10 -20 0 0 -11 -10 NA Peat Averaged for Image: Comparison of the season O,3 O,3 O,3 O,2 O,3 O,3 O,3 NA Peat Image: Comparison of the season O,3 O,3 O,3 O,2 O,3 O,3 O,3 NA Peat Image: Comparison of the season O,3 O,3 O,3 O,2 O,3 O,3 O,3 NA Peat Image: Comparison of the season O,3 O,3 O,3 O,2 O,3 O,3 NA Peat Image: Comparison of the season O,3 O,2 O,3 O,3 NA Peat Image: Comparison of the season O,3 O,2 O,2 O,2 O,2 O,3 NA Peat Image: Comparison of the season Image: Com and the season I	
Peat density, g/cm3Averaged for the seasonImage: Character of the seasonImage: C	
density, g/cm3 Averaged for the season 0,3 0,3 0,3 0,2 0,3 0,2 0,3 NA Peat density, g/cm3 Min 0,3 0,2 0,3 0,2 0,3 0,3 NA Peat density, g/cm3 Min 0,3 0,2 0,3 0,2 0,2 0,2 0,2 0,3 NA Peat density, g/cm3 Min 0,3 0,2 0,3 0,2 0,2 0,2 0,2 0,3 NA	
g/cm3 the season 0,3 0,3 0,3 0,3 0,3 0,3 0,3 NA Peat density, g/cm3 Min 0,3 0,2 0,3 0,2 0,3 NA Peat density, g/cm3 Min 0,3 0,2 0,3 0,2 0,2 0,2 0,3 NA Peat density, Min 0,3 0,2 0,3 0,2 0,2 0,2 0,2 0,3 NA	
Peat density, g/cm3 Min 0,3 0,2 0,3 0,2 0,2 0,2 0,2 0,3 NA Peat density, <td< th=""><th></th></td<>	
density, g/cm3 Min 0,3 0,2 0,3 0,2 0,2 0,2 0,2 0,3 NA Peat density, Image: Comparison of the state of the stat	
g/cm3 Min 0,3 0,2 0,3 0,2 0,2 0,2 0,2 0,3 NA Peat density,	
Peat density,	
density,	
g/cm3 Max 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 NA	
Peat	
moisture, Averaged for	
% the season 41,0 37,3 41,4 48,1 47,9 47,9 43,3 54,3 NA	<u> </u>
Peat	
moisture,	
% Min 25,5 18,1 27,9 27,5 25,9 25,9 36,5 39,6 NA	<u> </u>
Peat	
moisture,	
% Max 46,5 53,4 50,1 58,8 73,8 73,8 55,3 89,5 NA	
Asn and the second form	
content of Averaged for 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	
peat, % the season 4,5 18,4 10,8 12,3 12,5 12,5 10,3 15,4 NA	<u> </u>
AST content of	
Longet % Min 45 184 168 123 125 125 103 154 NA	
Peak, 70 Will 4,5 10,4 10,6 12,5 12,5 12,5 10,5 15,4 IVA Ach	
content of	
neat % Max 45 184 168 123 125 125 103 154 NA	
Averaged for	
pH the season 4.9 4.8 5.3 5.2 4.6 4.6 4.6 4.4 NA	
$\mathbf{pH} \qquad \mathbf{Min} \qquad 40 \qquad 42 \qquad 52 \qquad 47 \qquad 42 \qquad 42 \qquad 41 \qquad 41 \qquad \mathbf{NA}$	<u> </u>

	N										
	Microcenosis	1	2	3	4	5	6	7	8	9	
рН	Max	5,4	6,1	5,5	5,5	5,2	5,2	5,2	4,8	NA	
Field Peat											
moisture,	Averaged for										ł
%	the season	43,90	53,10	54,18	42,63	60,43	60,43	39,33	67,58	NA	l
Field Peat											
moisture,											ł
%	Min	19,00	25,90	36,50	27,90	26,20	26,20	18,10	39,60	NA	
Field Peat											ł
moisture,											ł
%	Max	74,60	93,00	91,00	53,80	98,00	98,00	57,40	93,00	NA	
Square, m2		62,5	22,6	187,5	95,4	11,7	116,9	224,7	183,9	NA	
Share of											ł
the total											ł
area of the											ł
plot, %		6,9	2,5	20,7	10,5	1,3	12,9	24,8	20,3	NA	
CO2, tCO2-											
equiv /ha		0.00	0.10	5.00		2.24	2.24	2.52		6.00	ł
/grow seas	avr	9,38	9,12	5,00	7,35	3,31	-2,21	-2,53	4,14	6,93	
CO2, tCO2-											ł
equiv/na	main	24.02	16.02	20.29	F 6 77	20.24	44 50	42.25	2 70	0.00	ł
/grow seas		-54,92	-10,05	-30,38	-30,77	-30,34	-44,50	-42,25	2,70	0,00	
											ł
	max	65 13	40 17	22.56	70 51	41 50	29.23	25.94	5.05	47 19	
CH4 +CO2-	Пал	05,15	40,17	22,50	70,51	41,50	23,23	23,34	5,05	47,15	
equiv /ha											ł
/grow seas	avr	0.05	0.00	0.45	0.63	0.01	0.08	0.24	0.00	0.67	
CH4, tCO2-		2,00	2,50	0,10	2,00	0,01	2,00		2,00	0,07	1
eguiv /ha											
/grow seas	min	-0,18	-0,06	0,13	0,13	-0,07	-0,07	-0,01	-0,01	-0,06	

	N										
	Microcenosis	1	2	3	4	5	6	7	8	9	
CH4, tCO2-											
equiv /ha											
/grow seas	max	0,19	0,10	2,60	3,05	0,12	0,41	0,47	0,02	2,91	
GWP,											
tCO2-equiv											
/ha /grow											
seas	avr	9,43	9,13	5,45	7,98	3,32	-2,13	-2,29	4,14	7,59	
GWP,											
tCO2-equiv											
/ha /grow											
seas	min	-35,10	-16,09	-30,25	-56,63	-38,42	-44,57	-42,26	2,69	-0,06	
GWP,											
tCO2-equiv											
/ha /grow											
seas	max	65,31	40,27	25,16	73,56	41,62	29,65	26,42	5,08	50,09	

Table 2 EF of the peatland site type calculated from microform mapping, growing season and a year

Microcenosis number	1,00	2,00	3,00	4,00	5,00	6,00	7,00	8,00	9,00		
	Juncus										
	effusus -			Betula spp		Eriophorum	Eriophorum			EF for	
	Calamagrostis	Eriophorum	Phragmites	Polytrichum	Juncus	angustifolium	angustifolium			growing	EF for
Microcenosis name	epigeios	vaginatum	australis	spp.	effusus	wet	dry	Bare peat	ditch	season	year
Input of microcoenoses											
to the emission factor of											
the plot (tCO2-eq/ha											
/growing season)	0,65	0,23	1,13	0,84	0,04	-0,27	-0,57	0,84	0,00	2,89	3 <i>,</i> 58

Emission from ditches -							
not included in the plot,							
(tCO2-eq/ha /growing							
season)				ditches	7,59	7,59	
				Cummulative		10,48	

Table 3 Fluxes and emission factors calculated from microcoenoses within the 70 % footprint

	growing season		winter		year		growing season		winter		year		EF
										СН4,		CH4,	
								СН4,		TCO2-		TCO2-	TCO2eg*
	tC-		тС-		TC-CO2*ha-	kgCH4	TCO2eq*ha-	TCO2-	тCO2*ha-	eq*ha-	тСО2	eq*ha	ha-
	CO2/ha	kgCH4 ha	CO2/ra	кгСН4 га	1	га	1	eq*ha-1	1	1	*ha-1	-1	1*year-1
tower	1,60	17,5	0,3	2,3	1,9	19,8	5,9	0,47	1,1	0,06	6,9	0,5	7,5
chambers													
(70%													
footprint)	0,9	10,0	0,3	2,3	1,2	12,3	3,5	0,27	1,1	0,06	4,5	0,3	4,8

Emission factors for CO2 for peatland Managed for extraction, t C-CO2 ha-1 year-1 2.8 (95% confidence interval 1.1-4.2)

CH4 EMISSION/REMOVAL FACTORS FOR DRAINED ORGANIC SOILS, kg CH4 ha-1 year-1 среднее при доле канав 5% 32,895 (95% confidence interval 6.6-59.5)