Exploring the Nexus of Two-Wheeler Gaseous Contributions and Driver Exposure in a Million-Plus Population City

Supporting data:

Emission profiles (Two-wheeler)-

Supplementary Figure 1: (a) Speed vs. CO (%vol), (b) Speed vs. CO₂ (%vol), and (c) Speed vs. HC (%vol) over time on a low-density road.

Supplement data Figure 2. Deposition fraction efficiencies according to particle size by ICRP model

Supplement data Figure 3. Deposition fraction efficiencies according to particle size by MPPD model

Supplementary Table 1: Summary of Mobile Platform-Based Personal Exposure Studies for PM							
Study area and period	Area type	Mode of exposure	Pollutants measured	Mean / PM Number concentration	Instruments used	Reference	
Antwerp, Belgium 2012	Urban Roadways	Bicycle (Aeroflex)	UFP	32310 pt/cm ³	TSI P-TRAK	Peters et al., 2014	
Newark, US	Urban		UFP	$33,330 \pm 23,451 \text{ pt/cm}^3$	CPC (3007 TSI)	Yu et al., 2016	
2012	Roadway	Walking	PM _{2.5}	$\begin{array}{c} 8.87 \ \pm \ 7.65 \\ \mu g/m^3 \end{array}$	SidePak		
Braddock, US	Urban	Cab	PM _{2.5}	$15.5 - 46.2 \ \mu g/m^3$	Hazdust monitor (EPAM 5000, Environmental	Tunno et al., 2012	
2010 -2011	City		PM10	$\begin{array}{c} 24.8-50.5\\ \mu g/m^3 \end{array}$	devices corporation)		
Helsinki, Finland	Urban	Van	UFP	$(10-16)\times10^{3}$ cm ⁻³	Electrical low pressure impactor	Lähde et	
2010	High traffic flow area	v all	PM _{2.5}	$21-39\;\mu g/m^3$	TSI DustTrak	al., 2014	
Mol, Belgium	Urban		UFP	$(14-18) \times 10^3$	TSI P-TRAK		
2010	Near road	Bicycle (Aeroflex)	PM2.5	$26-27\;\mu g/m^3$	Grimm Dust Monitor 1.108(Grimm Aerosol Technik, Germany)		
Antwerp, Belgium	Urban		UFP	21722 pt/cm ³	TSI P-TRAK	Peters et al., 2013	
2009	Cycling paths	Bicycle (Aeroflex)	PM ₁₀	97 μg/m ³	DustTrak DRX 8534		
Brussels, Belgium		rban Bicycle	PNC (dose)	4,631,562 dose/meter	TSI P-TRAK	Int Don's st	
2009	Urban		PM ₁₀ (dose)	11.5 μg/km	TSI DustTrak	al., 2010	
Mol	Urban		UFP	16040 pt/cm^3	TSI P-TRAK		

2009	Cycling paths	Bicycle (Aeroflex)	PM10	45 μg/m ³	Grimm Dust Monitor 1.108(Grimm Aerosol Technik, Germany)	Peters et al., 2013	
Brooklyn, US	Urban	Walking	UFP	$44,000 \pm 24,800 \text{ pt/cm}^3$	CPC (3781 TSI)	Zwack et	
2007	Roadway		PM _{2.5}	$\begin{array}{c} 36 \ \pm 30 \\ \mu g/m^3 \end{array}$	TSI DustTrak 8520	al., 2011a	
Mol, Belgium			UFP	$21,226 \pm 13,795 \text{ pt/cm}^3$	TSI P-TRAK		
2007	Urban	Bicycle (Aeroflex)	PM_1	$37.4 \pm 28.3 \ \mu g/m^3$	Grimm Dust Monitor 1.108(Grimm Aerosol Technik, Germany)	Berghmans et al., 2009	
			PM _{2.5}	$\begin{array}{r} 38.8\pm \ 26.4\\ \mu g/m^3 \end{array}$			
			PM10	$62.4 \pm 33.5 \ \mu g/m^3$			
Vancouver, Canada			UFP	33920 ± 35982 pt/cm ³	TSI P-TRAK		
2007	Bicycle routes	Bicycle	PM ₃	$\begin{array}{c} 21.04 \ \pm \ 7.9 \\ \mu g/m^3 \end{array}$	Grimm Dust Monitor 1.108 (Grimm Aerosol Technik, Germany)	Thai et al., 2008	
			PM10	50.66 ± 15.3 $\mu g/m^3$			
New York, US	Urban		UFP	$28,400 \pm 16,300 \text{ pt/cm}^3$	TSI P TRAK		
2006	Street Canyons	Walking	PM _{2.5}	${51.4 \ \pm 39.3 \ \mu g/m^3}$	TSI DustTrak 8520	Zwack et al., 2011b	
London, England	Urban		UFP	80009 pt/cm ³	TSI P-TRAK		
2004	Near road	Walking	PM _{2.5}	37.7 µg/m ³	High flow personal sampler(HFPS)	Kaur et al., 2005	
					T15 v Langan CO Measures		

Los Angeles, US 2003	Urban Roadway	SUV	UFP (median) PM _{2.5} (median)	190000 pt/cm ³ 54 μg/m ³	CPC (3007 TSI) CPC 3002 A TSI	Westerdahl et al., 2005	
Amsterdam, Netherlands	Urban	Van	UFP	160000 cm ⁻³	CPC 3022 TSI Inc	Weijers et	
2000	Motorway	v all	PM_1	$>9 \ \mu g/m^3$	LAS-v PMS Inc	al., 2004	
Xi'an, China	Urban roadway	Walk	PM10 PM2.5 PM1	127.23±22.26 μg/m ³ 71.59±5.11 μg/m ³ 57.01±3.11 μg/m ³	Grimm dust monitor1.109(Grimm Aerosol Technik, Germany)	Qiu et al., 2017	
Bogota, Colombia	Bike-paths	Bike	PM2.5	$19.0 - 156.2 \ \mu g/m^3$	DustTrack 8533(TSIInc.,USA)	Franco et al., 2016	
Londrina, Brazil	Urban roadway	Bicycle	PM _{2.5}	8.61 µg/m ³	DustTrack 8520(TSI,USA)	Targino et al., 2016	

Supplementary Table 2: Formulations of Goodness-of-Fit Tests					
GOF tests					
Kolmogorov-Smirnov (K-S) Test	$F_n(x) = \frac{1}{n} [Number of observations \le x]$ $(i - 1 i)$				
	$D = \max_{1 \le i \le n} \left(F(x_i) - \frac{t-1}{n}, \frac{t}{n} - F(x_i) \right)$				
Anderson-Darling (A-D) Test	$A^{2} = -n - \frac{1}{n} \sum_{i=1}^{n} (2i - 1) \cdot \left[\ln F(X_{i}) + \ln \left(1 - F(X_{n-i+1}) \right) \right]$				
Where D= K-S statistic, n= number of samples, x=Random sample, i=(1 to n), A ² = A-D statistic					
<u>Hypothesis Testing</u>					
H ₀ : the data follow the specified distribution.					
H _A : the data do not follow the specified distribution.					

Supplementary Table 3: Effect estimates derived from global studies						
Study area	Health outcome	Pollutant	Effect estimate [*]	Reference		
Global	All cause mortality rate	PM_{10}	0.2 -0.6 %	WHO, 2006		
Europe	Cardiopulmonary	PM_{10}	6 -13%	WHO, 2013		
Europe	Asthma COPD + Asthma All respiratory	PM10	1.2 % 1.0% 0.9%	Atkinson et al., 2001		
US counties	Risk for heart failure Hospitalization Cardiovascular	PM _{2.5}	1.28% 1.05% 1.49%	Bell et al., 2008; Dominici et al., 2006		
China	All cause mortality	PM_{10}	0.3%	Aunan & Pan, 2004		
India	All cause mortality	PM ₁₀	0.44%	Balakrishnan et al., 2011		

Supplementary Text:

The particle dose in various part of respiratory tract was estimated using the equation 1.

$$Dose(\mu g) = DF \times PM\left(\frac{\mu g}{m^3}\right) \times TV\left(\frac{m^3}{breath}\right) \times f\left(\frac{breaths}{\min}\right) \times t \text{ (min)}$$
(1)

Where 'DF' is the deposition fraction, 'TV' is the tidal volume, 'f' is the frequency of breathing and 't' is the duration of exposure which is considered to be 60 minutes. The attributable proportion (AP) was calculate based on equation 2.

$$AP = \frac{\sum\{[RR_c - 1] \times p_c\}}{\sum\{[RR_c] \times p_c\}}$$
(2)

Where, RR_c is the relative risk for the health outcome in category *c* of exposure and was calculated based on equation 3.

$$RR_c = \frac{(C-T)}{10} \times (RR - 1) + 1$$
 (3)

The other equations (4 to 8) used were :

$$IE = I \times AP \tag{4}$$

$$NE = IE \times N \tag{5}$$

$$INE = I - IE \tag{6}$$

$$\Delta I_c = [RR_c - 1] \times p_c \times INE \tag{7}$$

$$\Delta N_c = \Delta I_c \times N \tag{8}$$

Where,

p(c) - proportion of the population in category c of exposure

- C ambient air concentration of a pollutant,
- T threshold level of the pollutant (recommended by the WHO)
- RR relative risk for the selected health outcome,
- I- baseline frequency of selected health outcomes
- IE- rate (or number of cases per unit population) attributed to the exposure in population
- N- population
- NE- estimated number of cases attributed to exposure

INE- the frequency of the outcome in the population that is free from exposure

 $\Delta I(c)$ - the excess incidence

 $\Delta N(c)$ - excess number of cases

References

Cal EPA (California Environmental Protection Agency) (n.d.). Accessed 29 August 2018, from <u>https://oehha.ca.gov/chemicals/</u>.

Dağlı, B. 2010. Tekirdağ ve Çorlu'nun İklim Özellikleri Bakımından Karşılaştırılması (thesis). in Turkish

Günay, A. 2007. Tekirdağ'ın İklim Özellikleri (thesis). in Turkish

RAIS (The Risk Assessment Information System). (n.d.). Accessed 29 August 2018, from <u>https://rais.ornl.gov/cgi-bin/tools/TOX_search?select=chemtox</u>.

Turkish State Meteorological Service. 2020a. Accessed 9 August 2020, from <u>https://mgm.gov.tr/eng/forecast-cities.aspx?m=TEKIRDAG</u>.

Turkish State Meteorological Service. 2020b. Accessed 9 August 2020, from <u>https://www.mgm.gov.tr/iklim/iklim-siniflandirmalari.aspx?m=TEKIRDAG</u> in Turkish

USEPA (United States Environmental Protection Agency) Integrated Risk Information System. (n.d.). Accessed 29 August 2018, from <u>https://www.epa.gov/iris</u>.