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Stratospheric aerosol processes = vertical & meridional variations in particle size

A key aspectis that the
aerosol particles that form in
the tropics (initially a few nm,
but growing to a few 100 nm)
remain suspended in the
stratospheric air for ~1-3 yrs
(so-called “Tropical
Stratospheric Reservoir”)

Stratospheric processes
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Comparison UM-UKCA to satellite observations & microphysical
aerosol properties (size, SAD) — re-analyse “the first 6 months after”
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OMPS-LP observations
indicate the Hunga-Tonga
aerosol may have penetrated
into vortex during August ‘22
(within the lowermost
stratosphere)

But water vapour remained
outside the vortex
(transported to high latitudes
only after vortex breakup).

Wang et al. (JGR, 2023)
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Progression of the Pinatubo aerosol

cloud Aug to Sep 1991
(main layer at 20-25km).

Sep ‘91 Hudson eruption (Chile)

formed lower-altitude aerosol layer
(10-12km)

Pinatubo aerosol cloud
remains northward of 60S
(vortex barrier)

Antarctic vortex permeable at
lowermost stratosphere, with the
SAGE-Il measurements showing the
lower-altitude layer from Hudson in

Antarctic vortex in late-Sep/early-Oct.

Note balloon measurements from
McMurdo (Deshler et al., GRL 1992)
and from lidar (Adriani et al. 1992)
also profiled the Hudson aerosol
layer from McMurdo in spring 1991.
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Fig 1. Latitude-altitude median cross sections of SAGE II and
SAM II 1-um aerosol extinction ratio for six periods. The
crosses indicate the daily mean latitude of the SAGE II obser-
vations and the circles indicate the daily mean latitude of the
SAM II observations.

Abstract. At the beginning of the 1991 Austral spring,
volcanic aerosols from Mt. Pinatubo and Cerro Hudson were
sent in the polar stratosphere of the Southern Hemisphere.
ISﬂ;:‘.e.llite observations of aerosol extinction were used to identify
and track the movement of these aerosols in the vicinity of the
Antarctic vortex during August through November 1991. A
layer of mature Mt. Pinatubo aerosols was identified near 21 km
and a layer of fresh Cerro Hudson aerosols was identified near
12km. This altitude separation of the Mt. Pinatubo and Cerro
Hudson aerosols was observed throughout the period. Below
15 km, the polar stratosphere was subject to episodes of strong
wave activity which trans the Cerro Hudson aerosols
poleward and, after the middle of September, they became a
persistent feature beneath the vortex. Above 15 km, signatures
of Mt. Pinatubo aerosols were observed near the vortex
boundary, but significant portions of the vortex interior
remained free of any detectable intrusions of Mt. Pinatubo
aerosols until the final warming in mid-November.

Pitts & Thomason (GRL, 1993)
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Last 2 Arctic winters

Hunga-elevated H,O
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Last 2 Arctic winters
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The climatic effects of the direct injection of water vapour into the
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Joshi and Jones (2009, ACP) presented the

possibility that explosive eruptions can also (@) LAND ERUPTIVE
cause a positive radiative forcing from PLUME e e

increased stratosgheric water vapour PLUMES

- to have potentially offset a proportion of the
dominant volcanic aerosol surface cooling

after 1883 Krakatau

(b) OCEAN



226 VOLCANIC PLUMES

Phreatomagmatic activity can also result from magma interaction with external water in
subterranean aquifer systems. Two typical examples include the Ukinrek Maars explosicns
in 1977 and the last two phases of the Vesuvius eruption in AD 79. In the case of Ukinrek
Maars, Self er al. (1980) have suggested that the craters that were observed following the
explosions were the result of “the collapse of crater and conduit walls, and the blasting-out
of debris by phreatomagmatic explosions when the rising magma contacted groundwater
beneath the regional water table and a local perched aquifer”. Following the initial phase
of the AD 79 Vesuvius cruption Sheridan ef al. (1981) have suggested that cavitation of the
roof and walls resulted in rupture of the metamorphic encasement surrounding the conduit
and led to interaction of the magma with the regional hydrologic system. They further
conjecture that “because the magma level within the emptying chamber was below the
principal aquifer...an abundant source of water was available...when the venting
pressure dropped below the hydrostatic head™.

[~ Magme: WalcT MICTactons Can also 1AKe PIace afier SINCIC Magiha Nas been ragmented |
and discharged from a vent (Walker 1979). Many ignimbrite-forming volcanic centres are
near large water bodies or the sea. During explosive eruptions hot pyroclastic flows can be
discharged into water (e.g. Cas and Wright 1991). For example, during the 1883 eruptions
of Krakatoa volcano in Indonesia, voluminous dacite pyroclastic flows were discharged
into the Sunda Straits (Self and Rampino 1981; Sigurdsson ef al. 1991). Parts of the flow
were emplaced subaqueously at high temperature (Mandeville er al. 1994), whereas less
dense and more turbulent portions continued over the sea surface for distances up to 80 km
{Carey et al. 1996). The phreatomagmatic interaction of the flows with scawater generated
a meisture-rich co-ignimbrite plume and widespread fallont of mud rain. Walker (1979)
proposed similar processes of ash plume generation for pyroclastic flows entering the sea

Pressure dropped DEIUW LG Ly Ul uotuiie seveee

in the Taupo Volcanic Zone. i
Current moHe”mg STTOLtS suggest that the efficiency of magma-water Interaction 1s

controlled by the mass of water mixing into the eruption products, with values of about
0.35 yielding the most intense interactions (Wohletz 1983; Wohletz and Heiken 1992). The
following sections discuss the explosive energy and fragmentation that result from
magma-water interaction and the properties of erupting water—magma mixtures.

8.5.1 Explosive Energy and Fragmentation

If external water from the sea or a Jake mixes with erupting magma, or if the conduit
intersects a shallow aquifer, then there may be a very intense interaction which produces a
highly fragmented mixture (Walker and Croasdale 1972; Walker 1973; Seif and Sparks
1978). The energy driving this fragmentation is derived from the heating and expansion of
the water as it comes into contact with the very hot magma. For example, if liquid water is
heated to 1200 °C at a fixed volume then the pressure increases to about 500 MPa Thus
explosive activity can be much more intense but often characterized by large fluctuations,
as typified by the Surtsey example above. Therefore, the total power output from such
eruptions is no larger than magmatic eruptions, since in both cases the thermal energy of
the magma is the main source of energy.

The rapid chilling, contraction and fracture of the magma when it interacts with the
external water can produce blocky ash fragments with planar surfaces (Self and Sparks
1978; Heiken and Wohletz 1985). In some situations, the fragmentation process may be

Magma-—water interactions can also take place after silicic magma has been fragmented
and discharged from a vent (Walker 1979). Many ignimbrite-forming volcanic centres are
near large water bodies or the sea. During explosive eruptions hot pyroclastic flows can be
discharged into water (e.g. Cas and Wright 1991). For example, during the 1883 eruptions
of Krakatoa volcano in Indonesia, voluminous dacite pyroclastic flows were discharged
into the Sunda Straits (Self and Rampino 1981; Sigurdsson et al. 1991). Parts of the flow

were emplaced subaqueously at high temperature (Mandeville ef al. 1994), whereas less
dense and more turbulent portions continued over the sea surface for distances up to 80 km
(Carey et al. 1996). The phreatomagmatic interaction of the flows with seawater generated
a moisture-rich co-ignimbrite plume and widespread fallout of mud rain. Walker (1979)
proposed similar processes of ash plume generation for pyroclastic flows entering the sea
in the Tmmo Volcanic Zone.
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Sparks et al. (1997) text book “Volcanic Plumes”
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Spread of the Krakatoa Volcanic Dust Cloud as Related to the High-Level
Circulation

H. WEXLER
U. S. Weather Bureau, Washmgton D. C.

ABSTRACT

The spread of volcanic dust from the explosion of Krakatoa is described. An explanation
of the initial rapid lateral spread poleward in the Northern Hemisphere, the much slower spread
in the second month, and the accelerated spread in the third and fourth months is attempted in

terms of the normal monthly circulations at 19 km.

On August 27, 1883, following several months
of minor explosions, the volcano on the Island of
Krakatoa (Sunda Strait, between Sumatra and
Java, 6° 9’ S, 105° 22" E) blew up and ejected into
the atmosphere an estimated 13 cubic miles of lava,
ash, and mud. About one-third of the material fell
within 30 miles, covering some places 25 miles
distant with deposits to a depth of one foot. An-
other third, composed of fine dust, fell within 2,000
miles, while the remainder, consisting mostly of
very fine pumiceous bubble plates settled out
slowly from the atmosphere for several years and

roduced unusual optical effects, such as the re-
~ markable twilight glows, colored suns and moons,
and the “Bishop’s Ring.”

A committee appointed

by the Royal Society of London studied various

aspects of the explosion-and summarized their
findings in the classic “Eruption of Krakatoa” [6].
From their analysis of hundreds of observations

they were able to plot roughly the spread of the
volcanic cloud in the northern and southern hemi-
spheres. One of their results showed that it took

approximately three months for the cloud to

travel to western Europe in concentrations large
and persistent enough to produce the unusual and
prolonged optical effects observed. It was pointed
out in a previous paper by the present writer [7]
that coincident with the appearance of the optical
phenomena in western Europe during the last

Wexler et al.
(1951, BAMS)
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Here are the known facts as to the spread of the
cloud as deduced by optical observations and sum-

marized from material presented in “Eruption of
Krakatoa” [6].

1. Apart from off-shoots towards Japan and
South Africa immediately after the explosion, the
main body of the cloud moved from east to west
at an average speed of /3 miles per hour, com-
pleting at least two circuits of the earth in equa-
torial latitudes.

2. The cloud in making these circuits passed
over most places in three or four days which, com-
bined with the speed of travel of the leading edge,
indicates that the cloud was drawn out to a length
_of 5,000 to 7,000 miles, presumably by the vertical
shear in the equatorial easterlies.

3. Excluding sporadic twilight glows, due prob-
ably to small, broken-off masses of the cloud, the
northern extreme limit observed at the end of the
first circuit (Sept. 9) was 22° N (Honolulu) and
the southern extreme limit 33° S at Santiago,
Chile. The average limits were 16° N and 22° S,

4. At the end of the second circuit (Sept. 22)
the average cloud limits extended roughly from
24° N to 40° S.

5. North of latitude 30° N there was no further
indication of spread of the cloud from east to west.
In October when the cloud material had reached
30° N there were fewer accounts of its having
travelled to new places than before or after that
date, and during that month it spread only slightly
in latitude. .

6. The twilight glows spread gradually -north-
ward and southward, but up to about November 23

the glows seen north of about 32° to 36° N were
for t.he most part sporadic, apparently caused by
detached portions from the main cloud.

7. On_November 23 a remarkable movement
took place in such a manner that by November 27

the twilight glows were generally observed over
the United States and Europe; they are believed

to have spread to these regions from the mid-
Pacific and mid-Atlantic oceans respectively.

8. Aiter December 1883 it was not possible to
follow the main cloud as a distinct entity.

Wexler et al.
(1951, BAMS)
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Spread of the Krakatoa Volcanic Dust Cloud as Related to the High-Level
Circulation

H. WEXLER
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ABSTRACT

The spread of volcanic dust from the explosion of Krakatoa is described. An explanation
of the initial rapid lateral spread poleward in the Northern Hemisphere, the much slower spread
in the second month, and the accelerated spread in the third and fourth months is attempted in
terms of the normal monthly circulations at 19 km.

AR LN o

In absence of current upper air charts in 1883  explaining the observed travel of the northern
the proposed explanation will be based on the nor-

mal monthly upper air charts for the Northern hemlspherlc pOI’thH of the main cloud whose top
Hemisphere [1]. The August, September, Oc-  was computed from optical effects and rate-of-fall
tober, and November normal charts at 19 km (the : n 2
highest level available) will be used as a guide in formulae [4] to have decreased in helght from 3

explaining the observed travel of the northern  Km In August 1883 to 17 km 1n ]anuary 1884. An

hemispheric portion of the main cloud whose top P —————— £ A
was computed from optical effects and rate-ol-fall

formulae [4 tow% [2] Brooks, C. E. P, The movement of Volcanic Ash
km in August 1883 to 17 km in January . An over the Globe, Met. Mag., 67, 81, 1932.

earlier attempt was made by C. E. P. Brooks [2] [3] Newell, H. E., Jr., Upper Air Research by Rockets,
to relate the motion of the Krakatoa cloud in the Trans. Am. Geophy. Union, 31, 1, pp. 25-33, 1950.
Northern Hemisphere with a much lower level, [4] Pernter, J. M., Der Krakatau-Ausbruch und seine
namely the average cirrus motion (8 to 11 km) Folge-Erscheinungen, Met. Zeit., 6, pp. 329, 409,
during the months of October to December. 437, 1889.

Wexler et al.
(1951, BAMS)




v Dass die Ursache der Purpurlichter und der Dimmerung iiberhaupt in
Pernter et al. N4 E & ) : page
L ,/ |den in der Atmosphire schwebenden Staubtheilchen oder Kondensations-
(1889, articlein |, . : ; 2 3 2 f
Meteorologische Produkten des Wassers liegt, ist bekannt. Je hoher diese Triibungen in die
Zeitschrift) Atmosphiire hinaufreichen, desto lianger wihrt die Dimmerung, bezw. die
. - | Purpurlichter. Die Dauer dieser Erscheinungen und die Héhe der héchsten
K lichtzerstrenenden Schichten hingt nach einem einfachen Gesetze zusammen,
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condensation products of water floating in the atmosphere.

The higher these clouds reach into the atmosphere. the longer the twilight or the purple lights last.

The duration of these phenomena and the height of the highest light-destroying layers are related by a simple
law, so that the latter can be calculated from the former.

It was obvious to calculate from the time of the unusual twilights the height of the haze that was
observed at the same time and which was the obvious cause of both the greater brightness and the longer
duration of the purple lights.
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Metootologinchio Zeitscltift. Decembor 1850
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page 456

It 1s well known that the cause of the purple lights and of twilight in general lies in the dust particles or

condensation products of water floating in the atmosphere.

The higher these clouds reach into the atmosphere. the longer the twilight or the purple lights last.

The duration of these phenomena and the height of the highest light-destroying layers are related by a simple
law, so that the latter can be calculated from the former.

It was obwvious to calculate from the time of the unusual twilights the height of the haze that was

observed at the same time and which was the obvious cause of both the greater brightness and the longer
duration of the purple lights.

page 457

Time

Aug 23-27, 1883.
Sept 2-14 1883.
October 1883.

November 1883
December 1883
January 1884

no. of stations
4
7
4
11
30
4

middle geographical latitude

11 12
12 59
2545
45 33
44 30
49 30

height of the haze

32 km
24 km
25 km
26 km
19 km
17 km

From this it can be seen that the height of the haze was at first about 30 km. a height which, according

to a measurement by the captain of the Medea on August 2nd. 1883, reached the column of smoke from

Krakatoa. Later the haze only dropped slightly. then remained at about the same height. and then
dropped considerably from November to December.

Longer series of individual observers. such as Rollo Russell's in England. O. Jesse's in Berlin and Meldrum's
on Mauritius, 1.e. in very remote places, also lead to results very similar to the above general averages from
all observations. The haze would have dropped by 15,000 m between August 1883 and February 1884.
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Direct cite from English translation of Pernter (1889, Meteorologische Zeitschrift: pages 456 and 457)

(word count is 115 words for 4 sentences at top-of-page, and 119 words for 2 paras below the Table.)




22 - steep Krakatau aerosol descent (32km = 24km 15t weeks)

018 very similar to that observed after Hunga

225 (consistent with water vapour cooling forced descent)

2o§

:2 (@) CALIOP 532 nm scattering ratio (colour) + MLS water vapour (ppmv) in zonal band 15°S-5°S .
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- Krakatau thought to have also emitted a very large liu'q A Py % |

co-emission of H20 to stratosphere = ~500Tg SUITEE 7 B Y M) o] T

(offset part of surface cooling ~40Tg of SO, ?) ' |
- H,0 injection into stratosphere from Krakatau
via pyroclastic flow entering the ocean —— il - " . - 1u.

(different to Hunga’s shallow underwater setting) ~ e

- Initial descent of Krakatau aerosol from purple twilight Legras et al. (2022, GRL, Figure 3)

consistent with strong water vapour cooling
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