
Envisioning the Role of Physics-Informed Neural Networks in
Atmospheric Science: Advancements, Challenges, and Future

Prospects

Physics-Informed Neural Networks (PINNs) are a class of machine 
learning models that incorporate physical laws—typically expressed as 
partial differential equations (PDEs) directly into the neural network 
training objective. This coupling allows the network to enforce physical 
consistency during learning, making PINNs particularly advantageous in 
domains where labeled data are sparse but governing equations are well 
established, such as in atmospheric and climate sciences. Despite these 
strengths, most implementations have relied on standard multilayer 
perceptron (MLP) architectures, which suffer from well-known limitations 
including spectral bias toward low-frequency components, difficulties 
capturing sharp gradients, and instability when learning stiff or highly 
nonlinear dynamics. These architectural constraints hinder 
generalization across multiscale processes and often necessitate 
extensive tuning or preprocessing.

INTRODUCTION

The synthesized work spanning aerosol–cloud–
precipitation interactions, climate modeling, 
secondary organic aerosol (SOA) formation, 
weather prediction, and hurricane intensity 
forecasting demonstrates the flexibility of Physics-
Informed Neural Networks (PINNs) across diverse 
atmospheric applications. Many studies report 
computational advantages, including faster 
inference and reduced cost of solving complex 
PDEs, particularly in emulating sub grid 
processes. Most incorporate physical constraints 
directly into the loss function, while others explore 
architectural modifications to improve accuracy 
and convergence. Nonetheless, key challenges 
persist such as spectral bias, instability in stiff 
regimes, and difficulties with generalization across 
spatiotemporal scales. Additionally, the 
predominance of training on simulated datasets, 
while necessary for model development, limits the 
opportunity to fully assess performance against 
real-world atmospheric observations.

APPLICATIONS OF PINNS IN 
ATMOSPHERIC SCIENCE

Application
HPKM-PINN Advantage 
(MLP + KAN Hybrid)

Potential  Impact

ENSO prediction

KAN branch captures 
low/high-frequency 
modes; MLP preserves 
sequence memory

Better mid-/long-range 
prediction

Temperature video 
prediction

KAN enhances stability 
across sharp transitions

Smoother 
spatiotemporal fields, 
less drift

Aerosol–cloud–
precipitation

Hybrid improves 
robustness to delay-diff 
equations

Better modeling of 
feedback-driven 
systems

SOA chemistry 
(Amazon)

Parallel mixing balances 
physical vs. data-driven 
behavior

Reliable across wet/dry 
season variability

Hurricane data 
assimilation

KAN captures fine 
structure; MLP 
stabilizes flow field

Improved 3D field 
reconstructions from 
sparse observation

Aerosol microphysics
Hybrid can apply 
physics constraints at 
different layers

Preserves conservation 
laws while refining 
predictions

Air quality mapping
KAN adds spatial 
expressivity, improves 
resolution in gaps

Finer resolution 
pollution mapping in 
remote areas
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