

Towards using radar data to understand changes in sub-daily rainfall extremes: An Australian case study.

Simon Tett, Joshua Soderholm, Alain Protat, Annabel Bowen & Lisa Alexander

Long lived radar Stations

Analysis approach

Convert reflectivity to rainfall Compute max, time of max and other properties for each month Seasonally max, mean, work out time of max. Apply QC , mask.

Compute DJF (Summer) events. All values occurring on the same (local) day.

Compute cumulative beam blockage fraction and Topography For each event sample randomly. Do GEV fits and uncertainty analysis.

The University of Edinburgh Example Event

The Univer Ratio of radar to gauge DJF mean rain

Fractional sensitivity for location and scale parameters

- There is a lot of value in Radar data but processing it is hard work.
- Little evidence of coherent enhanced extremes related to inter-annual temperature.
 - Though some stations do show increase in extremes consistent with 7%/K.
 - Different from expectations where would expect at least 7%/K increase.
- However, there may still be some non-climate related signal in the radar data.
 - There is a negative trend in ratio between radar and gauge mean rain in latter part of some radar stations record.

Fits to GEV

