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Abstract Large‐scale ecological restoration (ER) in semiarid regions is often associated with substantial
terrestrial water storage (TWS) depletion. This study challenged previous estimates by demonstrating the
critical importance of considering other human activities when assessing ER impacts on TWS. Using a novel
analytical framework integrating GRACE satellite data and ground observations, we analyzed TWS changes in
China's Mu Us Sandyland under two scenarios: with and without considering mining and farming activities. Our
results show that ER consumed TWS at an average rate of 11.7 ± 12.2 mm yr− 1 from 2003 to 2022. Neglecting
the impacts of mining and farming led to a 251% overestimation of ER's effect on TWS. This study provided a
more nuanced understanding of water resource dynamics in restored ecosystems, emphasizing the need for
comprehensive approaches in TWS assessments and informing sustainable land management strategies
globally.

Plain Language Summary Planting trees and restoring landscapes, known as ecological restoration
(ER), helps mitigate climate change and improve dry environments. However, some are concerned that these
efforts may delete significant amounts of water, exacerbating the strain on already limited water resources. Our
study took a fresh look at this issue in the Mu Us Sandyland, a key area for restoration in northern China. We
used satellite data, ground measurements, and computer models to track water changes before and after
restoration initiatives. Importantly, we also considered how other human activities, including coal mining and
farming, affect water resources. We discovered that previous studies may have overestimated water restoration
usage by approximately 251% due to the failure to account for the impacts of other activities. This research helps
us better understand how restoring landscapes affects water resources in dry areas, which is crucial for planning
sustainable environmental projects worldwide.

1. Introduction
Large‐scale ecological restoration (ER) of degraded lands has emerged as a critical strategy for enhancing
ecosystem services and ensuring environmental security at global scales (Feng et al., 2013). Since 1998, China
has initiated an unprecedented series of ER programs, aiming at combating soil erosion, desertification, and
climate change while improving dryland ecosystems (Bryan et al., 2018; Lü et al., 2015; Ouyang et al., 2016).
Initiatives such as the Three‐North Shelterbelt Development Program and the Grain for Green Program have
significantly increased vegetation greenness and land improvement (Deng et al., 2014; Mu et al., 2022). However,
the success of these programs has led to an unexpected consequence: the intensification of evapotranspiration
(ET) due to increased vegetation cover. This has resulted in a decrease of soil water storage and groundwater
levels, ultimately reducing the total terrestrial water storage (TWS) and exacerbating water scarcity in affected
regions (Deng et al., 2016; Feng et al., 2016; Jia et al., 2017; Lu et al., 2018; Zastrow, 2019; Zhao et al., 2020).

The reduction in TWS poses significant challenges for both socioeconomic development and the protection of
water supplies for human and ecosystem needs (Cosgrove & Loucks, 2015). However, some studies suggest that
large‐scale vegetation recovery may enhance the atmospheric water cycle and increase precipitation through
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ecosystem feedback mechanisms, potentially mitigating some of the impacts on water resources (Chen
et al., 2023; Hoek Van Dijke et al., 2022; Tian et al., 2022; Zhang et al., 2023). Given these complex interactions,
accurately quantifying changes in TWS and the impact of ER is crucial for ensuring sustainable water resource
management in restoration practices, particularly in water‐limited drylands.

To address this challenge, researchers have utilized gravity field measurements from the Gravity Recovery and
Climate Experiment (GRACE) satellite, combined with multiple other environmental observations, to estimate
changes in TWS and the impact of ER (An et al., 2021; Rodell et al., 2018; Tapley et al., 2019; Zhao et al., 2020).
GRACE provides monthly anomalies in the Earth's gravitational field with unprecedented precision (Li
et al., 2022; Tapley et al., 2004). While these gravitational variations are primarily driven by water redistribution
at monthly scales (Tapley et al., 2004), it is essential to consider other anthropogenic impacts, such as reservoir
regulation, water diversion, and bulk commodity transport, when interpreting GRACE data in regions with
intensive human activities (Tang et al., 2013; Xie et al., 2018; Zhou et al., 2023). Previous studies have shown that
in some regions, such as the North China Plain, the mass‐loss rate of groundwater depletion observed by GRACE
is significantly offset by mass gains from reservoir regulation, water diversion, and coal transport (Tang
et al., 2013). This underscores the necessity of adopting a more comprehensive approach to estimating TWS
changes, one that considers region‐specific anthropogenic impacts on mass variations.

Our study focused on the Mu Us Sandyland (MUS) and its surrounding areas in northern China (Figures 1a and
1b), a semiarid region that has undergone over 20 years of large‐scale ER practices. This area is regarded as one of
the most successful examples of vegetation recovery and desertification reversal worldwide (Han et al., 2020;
Zhang & Wu, 2020; Zheng et al., 2020). Satellite observations of the Normalized Difference Vegetation Index
(NDVI) from 1981 to 2022 revealed a fluctuating yet overall upward trend, rising from 0.15 in 1981 to 0.22 in
2022 (Figures 1c and 1d). Annual land cover data indicated a rapid decrease in bare land area and an increase in
grassland area from 1998 to 2002 (Yang & Huang, 2021; Figure 1e), marking the transition between pre‐ER
(1981–1997) and post‐ER (2003–2022) periods.

Previous studies using GRACE time‐series data reported that ER in these regions consumed substantial TWS
(Cao et al., 2022; Zhao et al., 2020). This finding has raised concerns among the Chinese government and sci-
entists regarding the sustainable water use in ER programs. However, these estimates are questionable for
overlooking other human activities, such as coal mining and agricultural water consumption, which may
significantly impact mass variations in the region. To address these limitations and provide a more accurate
assessment of ER's impact on TWS, we propose a new analytical framework for examining the impact of ER on
the TWS in regions with intensive restoration and human activities (Figure 2). Our approach integrates multiple
GRACE satellite solutions, field observations, government reports, and ecohydrological modeling to generate a
comprehensive picture of TWS changes from 2003 to 2022.

The uniqueness of this study lies in its holistic approach to disentangling the effects of ER from other anthro-
pogenic impacts on TWS. By considering coal mining and agricultural activities, we aim to provide a more
nuanced and accurate assessment of ER's impact on water resources. Our findings will have significant impli-
cations for the design and implementation of future ER programs, not only in China but also in other regions
facing similar challenges in balancing ER with water resource management.

2. Methods
Figure 2 illustrates the approach used to disentangle the effects of ER from those of coal mining and farming on
TWS during 2003–2022 period, by combining GRACE data with a water balance approach. The detailed steps are
explained below. Note that all variables that lead to TWS loss have negative values, such as coal and water mass
flow from mining, ET, and runoff.

2.1. Estimate of Original GRACE TWS Changes (ΔTWSori)

A time series of changes in original GRACE TWS (ΔTWSori) from 2003 to 2022 was estimated by analyzing five
GRACE and GRACE Follow‐On (GRACE‐FO) solutions, including three standard spherical harmonic (SSH)
GRACE solutions (CSR, JPL, and GFZ) and two Mascon solutions (CSR and JPL). Comparison between
observed water table data (2018–2022) from 97 wells in MUS (Figure 1b) and derived groundwater changes for
various GRACE solutions revealed that CSR and JPL Mascon solutions exhibited the highest correlation with
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measured water table data (Text S1 in Supporting Information S1; Figure S1 in Supporting Information S1). The
average of these two solutions was used to calculate the annual changes in TWS of our study area, balancing the
strengths of both data sets. Note that GRACE and GRACE‐FO have an 11‐month data gap (July 2017 to May
2018), which limits the TWS continuity. The Variational Mode Decomposition with Long Short‐Term Memory
(VMD‐LSTM) was used to fill the 11‐month data gap between GRACE and GRACE‐FO missions (Text S2 in
Supporting Information S1; Figures S2 and S3 in Supporting Information S1). Interpolation results closely
matched GRACE data, ensuring continuity in our TWS time series (Figure S3 in Supporting Information S1).

2.2. Effects of Coal Mining (TWSM) on TWS and Corrected GRACE TWS (ΔTWScor)

Effects of coal mining on GRACE TWS (TWSM) were calculated by considering both the annual mass loss due to
coal mining (Mcmf) and the associated groundwater co‐production (Mwmf) as:

Figure 1. Location of MUS and observations. (a) Location of MUS (black polygon); (b) Geographical position of groundwater monitoring wells, meteorological
stations, and runoff hydrological stations in the study region; (c) Trend in annual NDVI over MUS during 1981–2022; (d) Annual mean NDVI time series from
GIMMS‐3g and MODIS averaged over the study region; and (e) Temporal changes in the area percentage of two major land cover types (bare land and grassland) from
1990 to 2022.
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TWSM = Mcmf +Mwmf (1)

The annual mass loss due to coal mining (i.e., the amount of raw coal mined) (Mcmf) (ton yr
− 1) was obtained from

China Statistical Yearbook (NBS, 2003–2022) and converted to equivalent water thickness (mm yr− 1) by
assuming water density of 1 ton m− 3.

During coal mining, significant groundwater volumes are pumped to dewater coal seams (Doulati Ardejani
et al., 2011; Mu et al., 2018). This groundwater is discharged directly into surface water runoff or evaporated into
the atmosphere. Given the scale of coal production in the study region, both coal transport and the associated
water co‐production are major sources of mass loss. Groundwater consumption for coal mining can be estimated
using the water consumption coefficient per ton of coal (Xie et al., 2018) as:

Mwmf =
μMcmf

S
× 1000 (2)

where Mwmf (mm yr
− 1) is annual groundwater consumption from coal mining, μ (m3 ton− 1) is water consumption

coefficient per ton of coal with an average value of 0.45 m3 ton− 1 from 25 coal mines inMUS (Zhang et al., 2013),
Mcmf (ton yr

− 1) is the annual mass loss due to coal mining, S is the area of the study region (m2), and 1000 is the
coefficient to convert meters to millimeters.

After removing the effects of mining activities, the corrected annual changes in GRACE TWS (ΔTWScor) from
2003 to 2022 was calculated as:

Figure 2. Analytical framework to study the potential impact of ER on total TWS. ΔTWSori is annual changes in original GRACE TWS. ΔTWScor is annual changes in
corrected GRACE TWSwith coal and water mass flow deductions frommining. Mcmf andMwmf are equivalent water thickness of annual coal and water mass flow from
mining, respectively. ΔTWSexEF is the estimated annual changes in TWSwith the exclusion of ER and farming. ΔTWSexE is the estimated TWS trend with the exclusion
of ER only. ΔETc is the increased ET from farming. ETexEF is the simulated ET excluding ER and farming impact. TWSM, TWSF and TWSE represent impact of mining,
farming and ER on TWS, respectively. Bule data represent the multi‐year averaged values for each variable and red data represent the effects of various activities on
TWS in 2003–2022. Negative values represent the loss of TWS.
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∆TWScor = ∆TWSori − TWSM (3)

2.3. Effects of Farming (TWSF) on the TWS

Cropland area in the study region increased by 5.2% (from 6.9% to 12.1%) over the past 20 years (Figure 3c and
Figure S4 in Supporting Information S1). After irrigation with groundwater, excess water is often replenished
back into the aquifer, the net effect of agricultural activities on TWS is primarily from ET (Kendy et al., 2004; Zou
et al., 2017). Therefore, the effect of farming on the TWS (TWSF) during 2003–2022 period was calculated as:

TWSF = ∆ETc ×
Sc

S
= (ETc − ETexEF) ×

Sc

S
(4)

where ΔETc (mm yr
− 1) is the increased ET from farming, ETc (mm yr

− 1) is cropland ET, ETexEF is the simulated
ET of natural land without considering ER and farming (see Section 2.4), Sc and S is the area of cropland and the
entire study region, respectively.

All croplands in the study region are irrigated. Because cropland remains relatively small and sporadically
distributed, we calculated the ETc using the Penman‐Monteith equation (Wang et al., 2013; Text S3).

2.4. Calculation of 2003–2022 TWS Excluding ER Impact (ΔTWSexE)

We first calculated the annual changes in TWS during 2003–2022 period excluding ER and farming (ΔTWSexEF).
Subsequently, the associated changes in TWS excluding only ER (ΔTWSexE) were determined by incorporating
the farming effects (Equation 4) into the TWS values that exclude both ER and farming, as follows:

∆TWSexE = ∆TWSexEF + TWSF (5)

Figure 3. Impact of coal mining, farming, and ER on TWS. (a) Annual changes in original TWS (ΔTWSori) and TWS with coal and water mass flow corrections
(ΔTWScor) using GRACE solutions from 2003 to 2022. The shaded area represents ±1sd; (b) Annual changes in TWS from 2003 to 2022 excluding ER and farming
effect (ΔTWSexEF) and TWS excluding ER effect only (ΔTWSexE). The shaded area represents±1sd; (c) Blue bars represent annual coal mass flow from 2003 to 2022,
and gray points represent annual cropland area proportion during the study period; (d) Comparison between observed and simulated multi‐year averaged TWS trend
during post‐ER period 2003–2022.
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The ΔTWSexEF was calculated using the water‐balance equation (Wan et al., 2015; Zeng et al., 2012; Zhao
et al., 2020) as:

∆TWSexEF = P + R + ETexEF (6)

where P is annual precipitation, R is annual runoff, and ETexEF is the annual ET simulated with the modified
Shuttleworth‐Wallace (S‐W) model (Li et al., 2023; Shuttleworth & Wallace, 1985). Runoff data were derived
from the Baijiachuan and Wenjiachuan hydrological stations (Figure 1b). Meteorological data (1981–2022),
including precipitation, temperature, air pressure, relative humidity, and wind speed were obtained from 28
stations across the study region (Figure 1b). For the land use and vegetation‐related parameters of the model,
annual average values from the pre‐ER period (1981–1997) were used to exclude the impacts of ER and farming
activities. The model performance was evaluated using the observed ET data from 54 flux towers across China
(Figure S5 in Supporting Information S1), and the detailed calculation procedure are referred in Supporting
Information (Text S4 in Supporting Information S1).

2.5. Effect of ER (TWSE) on the TWS

The impact of ER (TWSE) on TWS was calculated as:

TWSE = ∆TWScor − ∆TWSexE (7)

This can be derived by combining Equations 1− 6, yielding:

TWSE = ∆TWSori − TWSM − (P + R + ETexEF) − TWSF (8)

Thus, the effects of ER on the TWS during 2003–2022 were disentangled from those of coal mining and farming,
based on the GRACE observations and ecohydrological models (Figure 2).

3. Results
Original GRACE TWS observations (ΔTWSori) indicated an average decreasing trend of − 9.8 ± 6.7 mm yr− 1

from 2003 to 2022 (Figures 3a and 3d). The MUS extracts coal with 341.9 million tons per year (Figure 3c). This
net coal mass change in the MUS is equivalent to a TWS loss of approximately − 5.1 ± 0.6 mm yr− 1. After
deducing the coal mass flow, the adjusted GRACE‐derived TWS trend was − 4.7 ± 7.0 mm yr− 1. In addition, the
average groundwater loss due to coal seam dewatering was estimated to be approximately − 2.3 ± 0.3 mm yr− 1.
Therefore, after accounting for the total coal mining impact (TWSM), the corrected GRACE‐derived TWS
decreasing trend (ΔTWScor) was − 2.4 ± 6.6 mm yr− 1 (Figures 3a and 3d).

The modified S‐W model, calibrated with data from 54 flux towers across China (Figure S5 in Supporting In-
formation S1), accurately simulated long‐term ET trends (NSE = 0.49, RMSE = 1.9 cm, bias = 3.19; Figure S6a
in Supporting Information S1). Despite a minor underestimation of ET, the model demonstrated greater precision
in dryland ecosystems (Figure S6b in Supporting Information S1), making it suitable for our study area. During
the post‐ER period (2003–2022), excluding the effects of ER and farming, the estimated TWS (ΔTWSexEF) based
on water‐balance equation showed an increasing trend at an average rate of 31.3 ± 13.2 mm yr− 1 (Figures 3b and
3d). The estimated multi‐year average cropland ETc, calculated using the Penman‐Monteith equation, was
approximately 553.3 mm yr− 1, and the net effect of farming on TWS (TWSF) in the study region is approximately
− 22.0 ± 0.9 mm yr− 1. Therefore, the TWS, excluding the effects of ER only (ΔTWSexE), showed an increasing
trend at an average rate of 9.3 ± 12.9 mm yr− 1 (Figures 3b and 3d).

By comparing ΔTWScor and ΔTWSexE, results showed that ER consumed TWS at an average rate of
− 11.7 ± 12.2 mm yr− 1 during 2003–2022 (Figure 3d). Importantly, when coal mining and agricultural water
consumption are not accounted for, the apparent ER impact on TWS (i.e., ΔTWSori‒ΔTWSexEF) is
− 41.1 ± 13.1 mm yr− 1, an overestimation of approximately 251%.
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4. Discussion and Conclusions
Our study presents a novel analytical framework for accurately evaluating the impacts of ER and other human
activities on TWS in semiarid regions. By integrating multi‐source data and accounting for complex anthropo-
genic factors, we provide a more nuanced understanding of TWS dynamics and mechanisms in the MUS
(Figure 4), with implications for water resource management in similar regions worldwide.

4.1. Feasibility of the Analytical Framework

We found that failing to account for the mass‐loss from coal mining and transport resulted in a substantial
overestimation of water depletion. The importance of this correction is evident when comparing our adjusted
GRACE‐derived TWS change (mean = − 2.4 mm yr− 1) with ground‐based shallow aquifer measurements
(mean = − 2.7 mm yr− 1) in Yellow River Water Resource Bulletins (YRCC, 2003–2022). The close agreement
validates our approach and highlights the potential for misinterpretation when relying solely on uncorrected
GRACE data. Our findings have broad implications for TWS studies in regions with significant mining or other
mass‐altering activities, emphasizing the need for a more comprehensive approach to satellite‐based water
resource assessments.

4.2. Reassessing ER Impact on Water Resources

After accounting for coal mining and agricultural activities, we found that ER reduced TWS at a rate of
11.7 ± 12.2 mm yr− 1 during 2003–2022, which is lower than earlier estimates (Zhao et al., 2020). This finding
challenges the prevailing narrative of a looming water resource crisis caused by large‐scale ER programs. The
reduced impact can be attributed to the Chinese government's strategic selection of water‐saving tree species and
the predominant use of grassland and native shrubs in restoration efforts. For instance, the average multi‐year ET
of shrubs in MUS (294 mm) is significantly lower than the multi‐year average precipitation (402 mm) (Han
et al., 2023). This water‐conservative approach allows for natural replenishment of water resources consumed by
vegetation, minimizing the net impact on regional water availability. Moreover, ER may not result in continued
water resource depletion over time. The observed recovery of soil water content with increasing tree age indicates
that restored ecosystems and individual plants adapt to water stress conditions, potentially leading to long‐term
stability in water use (Jia et al., 2017, 2020; Wang et al., 2024).

Note that the potential positive feedback of ER to precipitation was not considered in this study, as the contri-
bution of local ER to enhanced precipitation remains uncertain in the relatively small area. The precipitation trend
during post‐ER period (2003–2022) in MUS shows an increase of 4.2 mm yr− 1. Regional and global analyses
indicate that ER may have contributed to the increased precipitation in the study area, with estimated increases of

Figure 4. Impact factors and mechanisms of TWS in semiarid sandy areas. (a) ER leads to a reduction in water resources through the use of aquifers; (b) Groundwater
withdrawal for crop irrigation from aquifers leads to the reduction in water resources. The blue arrow indicates pumping for irrigation; and (c) Mining operations below
aquifer cause a drop in the water table because of pumping groundwater for dewatering coal seams. The upward blue arrow represents dewatering coal seams, the
downward blue arrows indicate groundwater infiltration due to cracks of the aquifer, and the upward white arrows indicate coal extraction processes. Dashed lines
represent the water table before ER, irrigation, and mining, and solid lines represent the water table after various human activities.
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0.85 mm yr− 1 (Tian et al., 2022) and 1.6 mm yr− 1 (Hoek Van Dijke et al., 2022), respectively. Consequently, the
negative impact of ER on TWS is expected to be further mitigated if the feedback effect is taken into account.

4.3. Challenges in Agricultural Water Consumption and Groundwater Management

While our study provides a more optimistic perspective on the impacts of ER, it also highlights critical challenges
in agricultural water consumption and groundwater management. First, our results indicate that agricultural water
consumption is a primary factor for TWS loss over MUS. This is attributed to the relatively shallow and abundant
groundwater resources in the study region, which serves as the primary source for irrigation (Huo et al., 2016; Li
et al., 2021b). Second, in recent years, the local government has introduced the “Requisition‐Compensation
Balance” initiative, a policy that has incentivized local farmers to engage in the reclamation of arable land, leading
to a significant expansion of cultivated areas (Gao et al., 2024).

Additionally, the observed rapid decline in the water table (Figure S7 in Supporting Information S1), particularly
near agricultural and mining areas, highlights localized issues of overexploitation and disturbance that may not be
fully captured by regional‐scale TWS assessments. The discrepancy between GRACE‐derived TWS trends and
site groundwater measurements underscores the complexity of water resource dynamics in heavily modified
landscapes. Our findings suggest that water table decline in the region may be more strongly influenced by
groundwater withdrawal for agricultural irrigation and mining‐induced aquifer disruption than by ER activities.
Mining activities conducted below the water table not only requires dewatering but also may disrupt aquifers and
cause mining‐induced cracks (Zhang et al., 2016), resulting in neighboring observation wells showing an
exaggerated drop in water table (Figure 4c). This emphasizes the need for targeted groundwater monitoring and
management strategies, particularly in areas with intensive human activity.

4.4. Global Implications and Future Directions

Our study demonstrates the importance of a holistic approach to water resource assessment that considers
multiple anthropogenic factors. The analytical framework developed here can be applied to other regions with
intense human activity, providing a more accurate evaluation of TWS trends globally. This approach is partic-
ularly relevant as countries worldwide implement large‐scale ER projects to address climate change and land
degradation. The findings challenge the notion that ER programs inevitably lead to water resource depletion,
offering a more nuanced perspective on the water‐vegetation relationship in semiarid ecosystems. This has
important implications for global restoration efforts, suggesting that carefully planned and managed ER programs
can potentially enhance both ecosystem health and water resource sustainability.

Future research should focus on.

• Refining methods to separate the impacts of various human activities on TWS.
• Investigating long‐term adaptation mechanisms of restored ecosystems to water stress.
• Quantifying the feedback effects of large‐scale vegetation changes on regional and global water cycles.
• Developing integrated monitoring systems that combine satellite observations with high‐resolution ground

measurements to provide a more comprehensive understanding of water resource dynamics.

In conclusion, our study provides a more optimistic outlook on the water resource implications of ER in semiarid
regions. However, it also highlights the critical need for targeted management of groundwater resources,
particularly in areas with intensive agricultural and mining activity. By adopting a more comprehensive approach
to water resource assessment and management, we can better handle the complex interactions between human
activities, ecosystem restoration, and water availability in a changing climate.
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https://www2.csr.utexas.edu/grace/RL06_mascons.html. NDVI during 1981–2015 from GIMMS‐3g are avail-
able at https://climatedataguide.ucar.edu/climate‐data/ndvi‐normalized‐difference‐vegetation‐index‐3rd‐genera-
tion‐nasagfsc‐gimms. NDVI during 2002–2022 from MODIS are available at Didan (2015). CO2 concentration
data are derived from Lan et al. (2025). LAI during 2002–2022 fromMODIS are available at Myneni et al. (2021).
LAI during 1981–2010 from AVHRR are available at http://www.glass.umd.edu/Download.html. The storage of
plant canopy surface water, soil water, and snowwater are available at Beaudoing and Rodell (2020). The ET data
from flux tower observations are obtained at FLUXNET (https://fluxnet.org/data/fluxnet2015‐dataset/), China-
FLUX (http://www.nesdc.org.cn/theme/index?projectId=64e80ed07e2817429fbc7b09), and CERN (http://
www.cnern.org.cn/data/initDRsearch?classcode=STA). Soil hydraulic parameters data are derived from Zhang
et al. (2018).
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