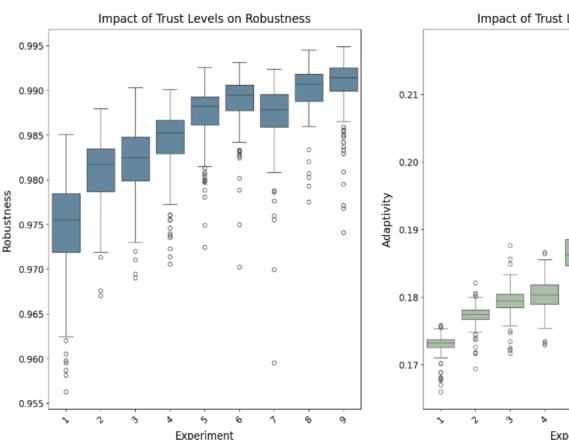

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

An Agent-Based Model of Governance Networks and Community Flood Resilience in the Pearl River Delta, China Angi Zhu¹, Wenhan Feng¹, Huan Zheng², Yingxin (1 Ludwig Maximilian University of Munich (LMU), Munich, Germany Huang³, Xin He³, Chengying Zhou³, Liang Emlyn Yang¹ 2 Chinese University of Hongkong, Shenzhen, China

1. Introduction

- **Gap**: the relationships between different climate change?
- populations and buildings + frequent meteorological disasters \rightarrow significant loss risks experience coping with flooding risks



3 Harmony Community Foundation, Guangzhou, China

e ole	Description	Variable Types and Range
ood- nality	Represents the community's functionality level after the flood event. This value reflects both flood-induced losses and stakeholder-supported recovery.	Float, [0, 100]
nce	The community's ability to resist flood damage, influenced by flood resilience measures	Float, Initial value = 1
ery	The community's ability to recover post- flood functionality, influenced by flood resilience measures	Float, Initial value = 1
ness	Proportion of functional loss avoided due to coordinated stakeholder intervention	Float, [0, 1]
vity	The speed of recovery and the activity level of nodes in the governance network	Float, [0, 1]
nce	The community's capacity to resist, absorb, learn from, and adapt to stresses or disruptions, calculated based on robustness and adaptivity	Float, [0, 1]
nse- oility	Probability of a stakeholder responding to community requests	Float, [0.2, 1]
nse- on	Duration (in ticks) for which a stakeholder remains active once a response begins	Integer, [1, 5]
ive	Whether a stakeholder is currently active	Boolean (True/False)
nse- nt	The number of times a stakeholder has responded	Integer, ≥ 0
rce	Remaining resources a stakeholder has available for responses; dynamically updated	Integer, ≥ 0, Initial value = 100
9	Link type indicating whether it originates from a government agency (formal) or from non-government actors (informal)	Categorical, {"formal", "informal"}
gth	Strength of the link, reflecting residents' perceptions of how much this connection helps the community in flood risk reduction, response and recovery	Float, ≥ 0
t	Trust level between stakeholders, dynamically changing over time	Float, [0, 1]
d- sity	Intensity of flooding, categorized by return periods	Enum, {"10-year", "50-year", "100- year", "200-year"}
d- ion	Duration of the flood event in minutes	Integer, [240, 1440]
er- Se	Current phase of the disaster process	Categorical, {"pre- disaster", "during- disaster", "post- disaster"}
res- ted	Activation status of five flood resilience measures	Boolean (True/False)

3. Results and discussion

3.1 Increasing network density does not always improve resilience. In networks with less connections, more non-government actors help community cope with and recover from floods better

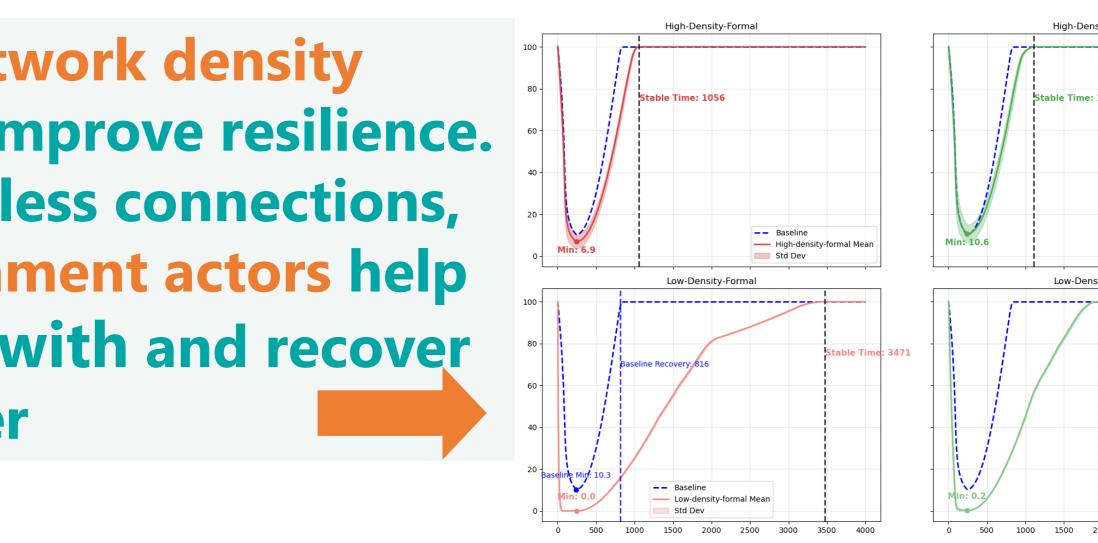
3.3 Social and institutional interventions combined with physical measures are most effective, but excessive or misallocated **resources can reduce their benefits!**

Resource–Resilience Quadrant of 32 Experiments Clustered Heatmap of Resilience Strategies Based on Relative Change (%) High Resilience - Low Resource High Resilience - High Resource Experiment 1- 32: different 0.80 resilience measu combination 21 - 24 0.65 Low Resilience - Low Resource Experiment Avg

	2.41	474.00	77.38
	2.41	353.65	58.24
	2.44	509.25	83.01
	2.43	384.90	63.23
	2.30	314.57	51.94
	2.33	331.96	54.73
	1.80	67.73	12.28
	2.04	171.50	28.98
	1.83	127.58	21.82
	1.07	29.98	5.67
	2.25	197.88	33.35
	2.24	192.43	32.48
	1.90	139.25	23.74
	1.12	37.43	6.89
	2.20	213.16	35.74
	1.98	87.17	15.52
	2.03	71.43	13.07
	2.05	71.45	13.08
	1.89	112.62	19.50
	0.33	1.67	0.54
	1.70	62.22	11.32
	1.78	106.80	18.48
	1.82	75.80	13.58
	2.32	288.17	47.77
	2.29	295.37	48.88
	2.28	302.46	50.00
	2.34	228.00	38.21
	2.45	560.39	91.15
	2.34	241.15	40.31
	2.46	572.08	93.01
	2.34	300.68	49.76
	0 (0.9875)	0 (0.1867)	0 (0.587)
· r	name robustness	adaptivity	resilience

4. Conclusions

- networks
- Informed evidence-based and context-specific flood resilience policies and advanced theoretical understanding
- **Future research**: Expand to multiple communities, explore power imbalances and conflicting stakeholder priorities



Baseline
High-density-informal
Std Dev

Baseline

Low-density-informal Std Dev

www.erc-stories.com

3.2 Increasing trust in non-government actors is more effective, especially when trust to government agencies is low

• Presented an empirically grounded agent-based model (ABM) of governance

Contact me Zhu.Angi@campus.lmu.de

EGU25-2839