Simulating the submesoscale rotating structures in the bora wind

Petar Golem^{1, 2}, Željko Večenaj², Hrvoje Kozmar¹, Branko Grisogono² EGU 2025 – session A1.38 April 27–May 2, 2025

¹Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb ²Department of Geophysics, Faculty of Science, University of Zagreb, Zagreb

University of Zagreb Faculty of Mechanical Engineering and Naval Architecture

1. Introduction

- Bora downslope windstorm along eastern coast of Adriatic
- Pulsations quasi-periodic leeside motion
 - period 1 20 min
 - caused by secondary instability of the leeside flow
- Mechanisms causing pulsations
 - lateral instability of breaking mountain wave
 - KHI between low-level jet and stagnation zone
 - buoyancy waves

- <u>Golem et al. (2024</u>) studied bora events with pulsations near Senj, Croatia
- Goal to examine characteristic motion of the horizontal velocity vector at the frequency of pulsations

 Rotational spectral analysis (RSA) method (e.g., Gonella 1972)

> w = u + iv $F(\omega) = w_{+}(\omega)e^{i\omega t} + w_{-}(\omega)e^{-i\omega t}$

- Rotational parameters
 - $S_{\pm} = |w_{\pm}^2| PSD$ of rotational components
 - *R_{ab}* ellipse semiaxis ratio type and direction of motion (∈ [−1, 1]; Figure)
 - α orientation of axis of oscillation
 - C stability parameter (coherence)

Figure: type of motion and characteristic rotational parameters. From left to right: (positive) circular, (positive) elliptical and rectilinear.

- Findings for ~ 40 bora events
 - high stability (C)
 - small R_{ab}, but almost exclusively positive (0.1–0.2)
 - α to the right of surface wind, aligned with shear vector at LLJ top
- Conclusion pulsations likely associated with KHI

Goal of the present work:

- Can numerical model (WRF) reproduce the characteristic motion (parameters)?
- Why the predominant positive rotation in horizontal plane?
 - For idealized KHI, $R_{ab} \approx 0$ is expected instead

2. Case study & simulation setup

- Case study summer bora event (May 31 June 2, 2005)
- Simulation WRF-ARW 4.3.3
 - 4 domains (9, 3, 1, 0.2 km); 0.2 km "LES" mode
 - dense vertical coordinate (Umek et al. 2021)
- Grid of points extracted hor. velocity components (1 Hz, 10 m a.g.l.)
 - enables plotting of spatial distributions of rotational parameters
 - but first validation

- Period reproduced well (3 11 min)
- Positive rotating component larger than negative $(R_{ab} > 0)$
- Axis of oscillation (α; ===>) to the right of near-ground wind (■
- Pulsations caused by KHI (Additional slides)

Structure and orientation of the motion reproduced

- Pulsation amplitude (average spectral peak between 3 and 11 min)
 - Simulation average positive component > negative over almost entire domain
 - However, their ratio is time-dependent → why?

- Angle ϕ between surface wind (\longrightarrow) and axis of oscillation (α ; \implies)
 - ϕ is large $\rightarrow |R_{ab}| > 0$ (May 31, 11 UTC case, $R_{ab} > 0$)
 - ϕ is **small** (α and surface wind parallel) $\rightarrow R_{ab} \approx 0$ (June 1, 07 UTC case)

- KHI α lies along the shear vector at the leeside low-level jet (LLJ) top
- Conclusion: directional shear determines the predominant rotation direction
 - Rectilinear shear (no direction change) → no predominant rotation direction
 - Directional shear → predominant rotation direction (sign opposite to direction of shear)

4. Future work

- Change in R_{ab} coincident with change in upstream wind profile
- Does upstream (synoptic) directional shear determine directional shear in LLJ, and thus rot. parameters (like R_{ab})?

Idealized simulations

5. References

- Golem, P., Večenaj, Ž., Kozmar, H., Grisogono, B. (2024) Misalignment between the propagation direction of the bora wind and its pulsations. *Quarterly Journal of the Royal Meteorological Society*, 150(759), 1194–1205. doi: http://dx.doi.org/10.1002/qj.4679
- Gonella, J. (1972) A Rotary-Component Method for Analysing Meteorological and Oceanographic Vector Time Series. *Deep-Sea Research and Oceanographic Abstracts*, 19(12), 833–846. https://doi.org/10.1016/0011-7471(72)90002-2.
- Clark, T. L., Farley, R. D. (1984) Severe Downslope Windstorm Calculations in Two and Three Spatial Dimensions Using Anelastic Interactive Grid Nesting: A
- Clark, T. L., Hall, W. D. (1994) Two-and Three Dimensional Simulations of the 9 January 1989 Severe Boulder Windstorm: Comparison with Observations. *Journal of the Atmospheric Sciences*, 51(6), 2317–2343.
- Scinocca, J. F., Peltier, W. R. (1989) Pulsating Downslope Windstorms. Journal of the Atmospheric Sciences, 46(18), 2885–2914. https://doi.org/10.1175/1520-0469(1989)046<2885:PDW>2.0.CO;2.
- Umek, L., Gohm, A., Haid, M., Ward, H. C., Rotach, M. W. (2021) Large-Eddy Simulation of Foehn–Cold Pool Interactions in the InnValley during PIANO IOP 2. *Quarterly Journal of the Royal Meteorological Society*, 147(735), 944–982. <u>https://doi.org/10.1002/qj.3954</u>.
- Belušić, D., Žagar, M., Grisogono, B. (2007) Numerical Simulation of Pulsations in the Bora Wind. Quarterly Journal of the Royal Meteorological Society, 133, 1371–1388. https://doi.org/10.1002/qj.

1600

1400

1200

1000 æ

800

600

400

- 200

/isi

b)

15.0

15.1

15.2

Mean wind speed/direction validation

11/14

- Cross-section of KH billows
 - Blue $0 < Ri_g < 0.25$

- Stability parameter (C) plot
- Example of rotational spectra and parameters for a 6 h interval

Location of the upstream cross-section

