DEMO UP STORAGE

F(

Geophysical Methods for Characterizing and Monitoring the in-situ CO₂ Mineral Storage Site in Helguvik, Iceland – Field Experiments and Modelling Results

Jonas S. Junker^{a,*}, Anne Obermann^a, Hansruedi Maurer^b, Stefan Wiemer^a and Alba Zappone^a in thankful collaboration with Martin Voigt^{c,d}, Andrea Moscariello^e and Ovie Emmanuel Eruteya^e ^a Swiss Seismological Service, ETH Zürich, ^bInstitute of Geophysics, ETH Zürich, 'Carbfix hf., Reykjavik, ^aInstitute of Earth Sciences, University of Iceland, 'GE-RGBA-Group, University of Geneva

1. Objectives

The DemoUpStorage project is the first field-scale in-situ CO₂ mineral storage project that utilizes saline water instead of freshwater for injection. Here, we present the geophysical site characterization - performed in Summer 2023 - and modeling results, investigating the effect of secondary mineral precipitation on seismic velocity variations in basaltic strata and the feasibility of crosshole seismic timelapse monitoring of in-situ CO2 mineral storage sites.

2. Geophysical Characterization of the Helguvik Pilot Site

The Helguvik pilot site was characterized in Summer 2023 in terms of background seismicity, ambient noise field, straticgraphic layering an d porosity & permeability distribution. For details see Junker et al (2025)

- Background seismicity & ambient seismic noise field
- Characterized using the backbone seismic network & a nodal array
- High anthropogenic seismic noise level due to nearby industries
- tomogaphy abandonned
- Network sensitive to events ML ≥ 0.4 (night) to ML \geq 0.8 (dav)

No local background seismicity above the detection limit observed

<u>Stratigraphic layering &</u> porosity/permeability distribution

- Cross-hole seismic fatray- & single-hole electrical resistivity tomographies
- Decameter thick stratigraphic layering varying seismic velocities and electrical resistivities, governed by porosity
- Excellent agreement between seismic velocities and electrical resistivities
- Results compared to wireline logging and the mineralogical composition drill cuttings to build a **detailed model** of the future **injection site**

3. Influences of Secondary Mineral Precipitation on Seismic Velocities

A large unknown in establishing crosshole seismics as monitoring strategy for in-situ CO₂ mineral storage is the magnitude of the velocitychange that may be expected due to the geochemical processes (host-rock dissolution, secondary mineral precipitation). Thus we implement a rock physics modeling approach to investigate the seismic velocity variations that can be expected. For further details see Junker et al. (in prep.):

4. Feasibility of Crosshole Seismic Timelapse Monitoring of in-situ CO₂ Mineral Storage

Based on the rock physics modelling result, we simulate a crosshole seismic timelapse suvey to analyze its limits for detecting precipitated secondary minerals. We vary the **anomaly amplitude** dv_{p} , its **lateral** extent dx and the distance between the two boreholes dw. We then quantify the fit of each inverted results using the objective function Ω_u :

where

with $\delta v_f(x,z)$ and $\delta v_i(x,z)$ being the differences between the baseline and the timelapse forward models and inversion results respectively.

5. Conclusions & Outlook

- Timelapse ERT profiles have been recorded Brennwald et al. (in prep.)

st Junker, J. S., Obermann, A., Voigt, M., Maurer, H., Eruteya, O. E., Moscariello, A., Wiemer, S. & Zappone, A. (2025). Geophysical characterization of the in-situ CO2 mineral storage pilot site in Helguvik, Iceland. International Journal of Greenhouse Gas Control, 141(104320), 104320. https://doi.org/10.1016/j.ijggc.2025.104320 Junker, J. S., Obermann, A., Wu, S.-M., Maurer, H. & Zappone, A. (in prep.). Synthetic Seismic Modelling to Optimize the Cross-hole Survey Design to monitor tiny velocity changes - feasibility and implications for in-situ CO2 mineralization monitoring. Brennwald, M. S., Junker, J. S., Kipfer, R., Obermann, A., Voigt, M., Chuan, W. & Zappone, A. (in prep.). On-site dissolved-gas analysis and electric resistance tomography as new tools to study CO2 mineral sequestration in aquifers.

Schweizerischer Erdbebendienst Service Sismologique Suisse Servizio Sismico Svizzero Swiss Seismological Service

*contact author: jonas.junker@sed.ethz.ch

$$\Omega_u = \frac{1}{n_x \cdot n_z} \sum_{i=1}^{n_x} \sum_{j=1}^{n_z} F(x, z)$$

$$f(x,z) = \frac{1}{\max(|\delta v_f(x,z)|)} \cdot |\delta v_i(x,z) - \delta v_f(x,z)|$$

• Synthetic seismic modelling suggests that velocity anomalies as small as $dv_p = 1\%$ and withs a minimal extent of 5 m x 25 m can be well recovered in a differential traveltime inversion

Rockphysics modelling suggests that velocity variations in the order of up to dv = 18 % can be reached given that 150 kg of secondary minerals precipitate per m³ of host-rock

Crosshole Seismics and ERT have shown to be viable tools for characterizing the Helguvik pilot site in terms of stratigraphic layers and porosity & permeability distribution

in summer 2024, after 8 month of CO2 injection (137 t in total). Analysis is ongoing and first results indicate the importance of temperature correction to the resistivity data for accurate interpretation. For details see

Inverted ERT data for CBM-01 without (left) and with (right) preliminar temperature correction

