

¹ Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China |² Artificial Intelligence Innovation and Incubation Institute, Fudan University, Shanghai, China ³National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Republic of Korea | ⁴ Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR, China

I. Introduction

Need for Extended-Range Forecasts

Extended-range forecasts beyond typical short-term forecast periods of 7-10 days can benefit many weather dependent sectors, such as agriculture, but remair challenging to achieve with sufficient accuracy and reliability.

Development of Machine Learning (ML) Models

traditional physical models have long been the foundation of weather forecasting, recent advancements for weather prediction have demonstrated ng skills that are comparable to, o even surpass, those of physical models

Study Objectives

This study evaluates the 1-month forecasting performance of a physical model (CFSv2) and an ML-based model (FuXi-ENS), with dynamical downscaling employed, aiming to provide valuable insights for enhancing extended-range (or subseasonal) forecasts in South Korea.

١١.	Metho	odology			
 Study P Observa Forecas 	eriod: July 2 ational Data t Data: (1) 9 (2) 9 (3) 1	2018 and 2023 a (OBS): 87 ASOS Seasonal Forecas Climate Forecast F uXi-ENS	stations in Sou sting System 5 System version	uth Korea (SEAS5) n 2 (CFSv2)	Step 1. Selection of CFSv2 and FuXi-I * Ensemble member number 1* 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 10 20 21 22 22 24 24
Мо	del	SEAS5	CFSv2	FuXi-ENS	14 10 17 10 10 10 20 21 22 20 24 20 27 28 29 30 31 32 33 34 35 36 37 38
Instit	ution	ECMWF (C3S)	NCEP	Fudan Univ.	40 41 42 43 44 45 46 47 48 49 50 51
Initial Co	onditions	1st UTC00 of each month	Every 6 hours	30th UTC12 of each month	
Ensemble	Members	51 members	1 member every 6 hours	51 members	ECMWF SEAS5 51-member average (ECMWF - daily mean temperature (Tmean)
Spatial R	esolution	1° x 1°	T126 (~1°)	0.25° x 0.25°	* SEASE is unsuitable for dynamical downsoalin
Temporal	Surface		6 hourly	<u>.</u>	because its pressure-level data is 12-hourly.
Resolution	Pressure	12 hourly	6 h	ourly	

III. Results

Relationship between Daily Temperature Fluctuations and Forecast Predictability

Figure 2. Observed (OBS) daily maximum and mean temperature (**Tmax and Tmean**) for July 2018 and 2023

Figure 3. Boxplots of daily Tmax/Tmean/Tmin correlations of SEAS5, CFSv2, and FuXi-ENS with OBS

______ ! Compared to July 2018, temperature fluctuated much more during July 2023, both in frequency and i magnitude (See *Figure 2*), and this large interdiurnal variability likely reduces forecast predictability. All SEAS5, CFSv2, FuXi-ENS forecasts show better temperature predictability for July 2018 than for July i 2023. Among the models, SEAS5 demonstrates the highest skill with the smallest variability across different members, followed by FuXi-ENS, while CFSv2 shows the lowest skill (See Figure 3).

IV. Summary and Future Work

ECMWF SEAS5, which provides the best temperature predictability for South Korea but cannot be directly used for dynamic downscaling, was utilized as a reference to select CFSv2 (physical model) and FuXi-ENS (ML-based model) members for dynamically downscaled forecast ensembles. The selected CFSv2 and FuXi-ENS members show improved predictive skill after dynamic downscaling, benefitting from the high-resolution simulations, with FuXi-ENS consistently outperforming CFSv2. Future work will expand the temperature analysis to additional years, incorporate more evaluation metrics (e.g., RMSE), and include precipitation — another critical variable alongside temperature.

Improving 1-month Forecasts in South Korea through the Dynamical Downscaling of Machine Learning-based Global Predictions

Subin Ha (sha@connect.ust.hk)¹, Xiaohui Zhong², Jina Hur³, and Eun-Soon Im^{1,4}

Tmean	(C	FSv2		* CFSv2 July 2023 is	not shown due to the limited sp	bace.
Tmin	240 234 228	3 222 216 210 204 19	8 192 186 180 174 168 162 15	6 150 144 138 132 12 member	26 120 114 108 lead time (h)	102 96 90 8	4 78 72 66 60 5	4 48 42 36 30 24 18 12	6
Figu	re 4a. Hea the	atmaps of dail selected me	y Tmax/Tmean/Tmir mbers for dynamical	n correlations downscaling b	of CFSv2 based on th	with OBS i he compar	for July 2018 a ison with ECM	nd NF-ENS51 (in green b	oxes)
Tmax Tmean Tmin	x	3 04 05 06 07 08 09	9 10 11 12 13 14 15 16 17 18	Fu) 3 19 20 21 22 23 24 ensemble n	Xi-ENS 25 26 27 28 2 nember number	29 30 31 32 33	* FuXi-ENS July 2018 is	not shown due to the limited sp 40 41 42 43 44 45 46 47 48	bace. 49 50
Figu	re 4b. Hea the	atmaps of dail selected me	y Tmax/Tmean/Tmir mbers for dynamical	correlations downscaling b	of FuXi-EN based on th	VS with Ol he compar	3S for July 202 ison with ECM	3 and NF-ENS51 (in purple	boxes)
(a)	Voor	Selected CFSv2	Daily Tmean Correlations with		(b)	Voor	Selected	Daily Tmean Correlations v	
	Teal		ECMWF-ENS51	OBS		fear	FuXi-ENS	ECMWF-ENS51	OB
		24h	0.932	0.891		2018	40	0.942	0.95
	2018	36h	0.912	0.883			39	0.937	0.93
		162h	0.877	0.855			37	0.935	0.92
		6h	0.875	0.833			13	0.913	0.88
	2023	234h	0.845	0.540		2023	44	0.741	0.29
		228h	0.725	0.461			5	0.725	0.59
		24h	0.685	0.380			14	0.714	0.29
		30h	0.590	0.451			12	0.704	0.42
Table EC dyr	e 2. Daily with MWF SE namically mpariso	Tmean correl OBS (true valu AS5 demon y downscaled n with ECMV	lations of the select res) for July 2018 and strates its useful d. Although not alv VF-ENS51 consist	ed (a) CFSv2 a 2023 ness as a b vays the best ently achieve	end (b) Fux enchman , the CFS e positive	(i-ENS me rk for sel Sv2 and F e correla	mbers with EC ecting CFSv2 uXi-ENS mer tions with OE	<i>MWF-ENS51 (selecti</i> and FuXi-ENS me nbers selected ba SS (true values).	on criter – – – – embers ised on

Sv2 and FuXi-ENS members for dynamical downscaling

Figure 5. Spatial distribution of weekly Tmean from OBS (interpolated from 87 stations), ECMWF-ENS51, 4-selected-member ensembles of CFSv2 original (OG) forecasts and downscaled (DS) forecasts (CFS-OG-ENS4 and CFS-DS-ENS4), and 4-selected-member ensembles of FuXi-ENS original forecasts and downscaled forecasts (FuXi-OG-ENS4 and FuXi-DS-ENS4) for July (a) 2018 and (b) 2023 (Upper right: spatial mean values) Note: the OBS spatial distribution is interpolated from only 87 ASOS stations, which may not be fully comparable to the 5-km downscaled forecas

• While ECMWF SEAS5 shows the highest daily temperature correlations with OBS (as presented in Figure 3), its low spatial resolution leads to a general underestimation of temperature and an inability to capture regional details. CFSv2 original forecasts (CFS-OG) with a resolution similar to SEAS5, show even greater underestimation. Meanwhile, FuXi-ENS original forecasts (FuXi-OG) with relatively higher resolution show little to no underestimation in terms of spatial mean – particularly no underestimation in 2023, and only slight underestimation in 2018 (noting that S. Korea experienced a record-breaking summer in 2018). However, even FuXi-OG remains too coarse to accurately capture fine-scale regional variability. After dynamic downscaling, both CFSv2 and FuXi-ENS forecasts show significant improvements, particularly in simulating region-specific temperature features, benefitting from highresolution simulations. In terms of spatial mean values, the temperature underestimation apparent in CFS-OG-ENS4 is slightly reduced in CFS-DS-ENS4 When comparing CFSv2 and FuXi-ENS, FuXi-OG-ENS4 already outperforms CFS-OG-ENS4; after downscaling, FuXi-DS-ENS4 shows even more pronounced improvements over CFS-DS-ENS4, with spatial mean values closer to OBS, demonstrating the great potential of ML-based models like FuXi-ENS for extended-range forecasting

V. Acknowledgements

This study was supported by the "Research Program for Agricultural Science & Technology Development (Project No. RS-2024-00399847)", National Institute of Agricultural Sciences, Rural Development Administration, Republic of Korea.

• Weather Research Forecasting (WRF) model with Advanced Research WRF (ARW) dynamic core (Version 4.5)

System)	Physical Parameterizations		
1600	Microphysics	WSM3	
- 1400 - 1200	Radiation Physics	RRTMG longwave and shortwave	
- 1000	Surface Layer	Revised MM5 Monin-Obukhov scheme	
- 600 - 400	Land Surface	Noah Land Surface Model	
26°E 127.5°E 129°E 130.5°E 0	Planetary Boundary Layer	Yonsei University scheme	
ed domain (5km)	Cumulus Parameterization	Kain-Fritsch scheme	

