



# IMPACT OF RUPTURE GEOMETRY UNCERTAINTY ON RAPID EARTHQUAKE IMPACT ASSESSMENT: A CASE STUDY

#### Furkan Narlitepe<sup>1,2</sup>, Vitor Silva<sup>1,3</sup>, Christopher Brooks<sup>1</sup>

<sup>1</sup> Global Earthquake Model Foundation, Via Adolfo Ferrata 1, 27100, Pavia, Italy
<sup>2</sup> IUSS Pavia, Palazzo del Broletto, Piazza della Vittoria 15, 27100, Pavia, Italy
<sup>3</sup> University of Aveiro, Campus de Santiago, 3800 Aveiro, Portugal

#### 29/04/2025





### **Problem Statement**

- Many automatic systems that produce reports for the evaluation of the post-earthquake impact have proven their usefulness after devastating earthquakes.
- However, highly destructive earthquakes inevitably involve "blind hours" during which the impact cannot be effectively assessed. In such blind hours, predictions proceed through a series of approximations, simplifications, and corrections.
- For instance, the USGS PAGER system, undoubtedly the most well-known and mature platform for rapid impact assessment in the world, provides several updates of their impact metrics in the hours and days after destructive events.



# **Problem Statement (cont.)**

- A rapid impact assessment procedure relies on conceptually **three main components** in the region of interest:
  - 1) Ground-shaking estimation
  - 2) Building exposure data
  - 3) Set of vulnerability functions
- While points 2 and 3 can be prepared in advance, **point 1** is quite difficult to clearly estimate with a best clarify after the earthquake.
- For a rapid and effective assessment in such clarity, **«the rupture geometry»** estimation is one of the major contributing parameters for UNCERTAINTY in both ground-shaking and, accordingly, impact assessment results.



#### Aim

- This study investigates discrepancies arising from rupture geometry uncertainty and their potential effect on ground shaking and impact estimates in a very well-known M7.8 Kahramanmaras earthquake scenario.
- To this end, we explore different strategies to model rupture geometry, ranging from pointsource approximations to planar fault ruptures.



### Methodology





#### **Ground Shaking Estimates**





### **Economic Loss Estimates**



| Province   | Estimated Economic Loss for Each Rupture Modeling Approach (US Dollars) |                        |                        |                  |  |  |
|------------|-------------------------------------------------------------------------|------------------------|------------------------|------------------|--|--|
|            | Point-Source                                                            | Planar                 | Pre-Calculated         | Complex Finite   |  |  |
| ADANA      | 16.8 million (99%)                                                      | 3,603.1 million (195%) | 1,093.0 million (10%)  | 1,220.7 million  |  |  |
| ADIYAMAN   | 64.7 million (96%)                                                      | 1,139.5 million (22%)  | 74.2 million (95%)     | 1,457.3 million  |  |  |
| DİYARBAKIR | -                                                                       | -                      | -                      | 19.4 million     |  |  |
| ELAZIĞ     | -                                                                       | -                      | -                      | 295.0 million    |  |  |
| GAZİANTEP  | 4,781.8 million (28%)                                                   | 6,070.3 million (62%)  | 3,476.0 million (7%)   | 3,742.9 million  |  |  |
| ΗΑΤΑΥ      | 229.8 million (95%)                                                     | 4,176.4 million (14%)  | 4,350.0 million (10%)  | 4,855.4 million  |  |  |
| MALATYA    | 0.2 million (100%)                                                      | 676.4 million (65%)    | 1.5 million (100%)     | 1,907.5 million  |  |  |
| K.MARAŞ    | 1,529.9 million (62%)                                                   | 1,992.1 million (51%)  | 3,680.0 million (9%)   | 4,050.2 million  |  |  |
| ŞANLIURFA  | 43.5 million (85%)                                                      | 304.7 million (8%)     | 10.6 million (96%)     | 282.5 million    |  |  |
| ĸilis      | 149.8 million (10%)                                                     | 195.1 million (17%)    | 171.5 million (3%)     | 166.5 million    |  |  |
| OSMANİYE   | 472.3 million (43%)                                                     | 1,070.8 million (30%)  | 1,075.0 million (31%)  | 822.5 million    |  |  |
| TOTAL      | 7.288.8 million (61%)                                                   | 19.228.4 million (2%)  | 13.931.8 million (26%) | 18.819.8 million |  |  |

7,288.8 million (61%) 19,228.4 million (2%) 13,931.8 million (26%) 18,819.8 million



# **Number of Completely Damaged Buildings Estimates**





| Province   | Estimated Number of Completely Damaged Buildings for Each Rupture<br>Modeling Approach |                 |                |                |  |  |
|------------|----------------------------------------------------------------------------------------|-----------------|----------------|----------------|--|--|
|            | Point-Source                                                                           | Planar          | Pre-Calculated | Complex Finite |  |  |
| ADANA      | 81.6 (98%)                                                                             | 12,412.1 (188%) | 3,975.4 (8%)   | 4,303.2        |  |  |
| ADIYAMAN   | 203.6 (97%)                                                                            | 5,722.9 (23%)   | 245.0 (97%)    | 7,438.6        |  |  |
| DIYARBAKIR | -                                                                                      | -               | -              | 68.2           |  |  |
| ELAZIG     | -                                                                                      | -               | -              | 736.2          |  |  |
| GAZIANTEP  | 13,663.8 (28%)                                                                         | 19,735.1 (84%)  | 9,997.5 (7%)   | 10,711.8       |  |  |
| ΗΑΤΑΥ      | 832.8 (97%)                                                                            | 23,498.3 (20%)  | 24,603.2 (16%) | 29,242.7       |  |  |
| K.MARAS    | 6,445.4 (69%)                                                                          | 9,213.7 (56%)   | 18,324.3 (13%) | 20,984.3       |  |  |
| KILIS      | 724.5 (15%)                                                                            | 1,066.0 (26%)   | 890.2 (5%)     | 847.7          |  |  |
| MALATYA    | 1.3 (100%)                                                                             | 2,795.1 (73%)   | 7.1 (100%)     | 10,318.9       |  |  |
| OSMANIYE   | 2,305.5 (56%)                                                                          | 6,804.4 (31%)   | 7,008.3 (35%)  | 5,183.9        |  |  |
| SANLIURFA  | 127.2 (84%)                                                                            | 1,010.4 (27%)   | 33.6 (96%)     | 796.3          |  |  |
| TOTAL      | 24,385.5 (73%)                                                                         | 82,257.9 (9%)   | 65,084.5 (28%) | 90,631.8       |  |  |

### **Number of Fatality Estimates**



| _          | Estimated Number of Fatality for Each Rupture Modeling Approach |              |                |                |  |  |
|------------|-----------------------------------------------------------------|--------------|----------------|----------------|--|--|
| Province   | Point-Source                                                    | Planar       | Pre-Calculated | Complex Finite |  |  |
| ADANA      | 6 (99%)                                                         | 1,392 (197%) | 407 (13%)      | 469            |  |  |
| ADIYAMAN   | 32 (97%)                                                        | 770 (21%)    | 37 (96%)       | 971            |  |  |
| DİYARBAKIR | -                                                               | -            | -              | 9              |  |  |
| ELAZIĞ     | -                                                               | -            | -              | 85             |  |  |
| GAZİANTEP  | 2,402 (32%)                                                     | 3,223 (77%)  | 1,690 (7%)     | 1,816          |  |  |
| ΗΑΤΑΥ      | 101 (96%)                                                       | 2,145 (21%)  | 2,300 (15%)    | 2,702          |  |  |
| MALATYA    | 0 (100%)                                                        | 358 (71%)    | 1 (100%)       | 1,225          |  |  |
| K.MARAŞ    | 609 (68%)                                                       | 870 (55%)    | 1,630 (16%)    | 1,931          |  |  |
| ŞANLIURFA  | 49 (81%)                                                        | 338 (33%)    | 10 (96%)       | 254            |  |  |
| KILIS      | 83 (15%)                                                        | 117 (21%)    | 100 (3%)       | 97             |  |  |
| OSMANİYE   | 233 (47%)                                                       | 596 (35%)    | 619 (41%)      | 440            |  |  |
| TOTAL      | 3,516 (65%)                                                     | 9,809 (2%)   | 6,794 (32%)    | 10,001         |  |  |



### **Results and Conclusions**

- Point-source approximation demonstrates significant limitations, introducing substantial discrepancies (61–73% in loss estimates at the aggregated level) in each impact metric, thereby compromising rapid impact assessment reliability.
- In contrast, the planar rupture model provided compatibility compared to the benchmark results (2–9% differences), while the pre-calculated rupture resulted in differences at the order of 26–32% at the aggregated level.
- Critically, aggregate-level estimates masked provincial disparities, and therefore, inferences on a provincial basis are needed to avoid insufficient and possibly misleading interpretations.

- For instance, the difference rates of the number of completely damaged buildings estimates obtained using the point-source approximation for Kahramanmaras, Hatay and Gaziantep provinces are **64%**, **98%**, **and 5%**, respectively, while these error rates are **13%**, **16%**, **and 7%**, respectively, in the case of using the pre-calculated rupture model.
- The pre-calculated rupture model offers an alternative solution to the approximated rupture models, improving rapid loss assessment accuracy in cases where data constraining the rupture geometry are not available after a destructive earthquake.





This presentation participates in OSPP

Contact person for the questions: Furkan Narlitepe furkan.narlitepe@globalquakemodel.org

