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Abstract: Small, forested catchments are prototypes of terrestrial ecosystems and have been
studied in several disciplines of environmental science over several decades. Time series of
water and matter fluxes and nutrient concentrations from these systems exhibit a bewilder-
ing diversity of spatiotemporal patterns, indicating the intricate nature of processes acting
on a large range of time scales. Nonlinear dynamics is an obvious framework to investi-
gate catchment time series. We analyzed selected long-term data from three headwater
catchments in the Bramke valley, Harz mountains, Lower Saxony in Germany at common
biweekly resolution for the period 1991 to 2023. For every time series, we performed gap
filling, detrending, and removal of the annual cycle using singular system analysis (SSA),
and then calculated metrics based on ordinal pattern statistics: the permutation entropy,
permutation complexity, and Fisher information, as well as their generalized versions
(g-entropy and x-entropy). Further, the position of each variable in Tarnopolski diagrams is
displayed and compared to reference stochastic processes, like fractional Brownian motion,
fractional Gaussian noise, and {3 noise. Still another way of distinguishing deterministic
chaos and structured noise, and quantifying the latter, is provided by the complexity from
ordinal pattern positioned slopes (COPPS). We also constructed horizontal visibility graphs
and estimated the exponent of the decay of the degree distribution. Taken together, the
analyses create a characterization of the dynamics of these systems which can be scruti-
nized for universality, either across variables or between the three geographically very
close catchments.

Keywords: time series; ordinal patterns; catchments; ecosystems; permutation entropy;
permutation complexity; fisher information; Tarnopolski diagrams; horizontal visibility graphs

1. Introduction

Long-term monitoring of terrestrial ecosystems is a key activity producing insights
into trends, pertinent oscillations, and system dynamics in general. It is the backbone of
statements about changes in the environment on different time scales, whether these are
natural phenomena (e.g., succession), related to human activities like land use change,
or associated with climate change. The monitoring programs generate long-term time
series, often spanning several decades, and Earth system models (ESMs) are attempting
to reproduce the observations assuming a set of processes and eventually to predict them
using scenarios like shared socioeconomic pathways (SSPs), or to classify them by the
urgency of intervention, in the case of management-related variables.

ESMs have to assume a set of processes acting within the system and across its
boundaries and need to be parametrized prior to simulations. The set of parameters needed
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for model calibration is often beyond what monitoring can deliver, and assumptions have
to be made for the values of unobserved (or even unobservable) parameters. This is often
conducted through an inverse modelling approach, where minimizing a cost function
describing the data-model discrepancy is used to estimate the parameters needed. This is
the recipe of most process-based approaches in the environmental sciences.

The alternative, data-driven approach does not assume given processes and requires
fewer or even no parameters to be estimated. It starts with a set of observed data, often
time series, and concludes on their multivariate spatiotemporal structure. This is the route
we follow in this article.

We aim at a thorough characterization of this spatiotemporal structure through a
set of metrics obtained from methods from nonlinear dynamics. These metrics separate
deterministic from stochastic parts of the time series, elucidate the stochastic properties
of them, and provide insights into their information content and complexity, thereby also
indicating the efforts needed to successfully model them in a process-based way. It is
reasonable to assume that reproducing rather complex data might also require complex
models, although there might be exceptions. The opposite is not necessarily true: there are
simple processes that generate complex data, as convincingly demonstrated by toy chaotic
maps like the logistic map or the Rossler attractor, and so on. From the many approaches
to investigating the complexity of time series [1], we focus mainly on those where Osvaldo
Rosso had a leading role or made significant contributions [2-10], and predominantly on
methods utilizing ordinal pattern statistics.

Using a set of variables across several locations allows us to investigate the classic ques-
tion of whether the dynamics of a given variable (here, ion concentrations in water solutions)
are universal for that variable, governed by the same processes at different locations (spatial
universality), or, alternatively, the location (point of measurement) determines the dynamics
(temporal universality), i.e., we observe similar dynamics within the given ecosystem, but the
same variables at different locations show diverging dynamics. The modelling framework
suitable in each case might be rather different. Classifying the dataset by appropriate metrics
supports decisions about the most suitable modelling approach. It is, however, notoriously
difficult to reproduce all of the complexity metrics with any process-based model.

Two typical modelling approaches prominent in environmental sciences, in particular
in forest science and in hydrology in our case, can be described as follows: firstly, physical
transport models based on a dynamic system approach (the Richards equations solved
with appropriate boundary conditions [11]) and, secondly, forest growth models (e.g., yield
tables [12] or growth simulators [13]) based on regional growth histories of the same species
and treatment. The first one focuses on abiotic aspects of the system and keeps the acting
organisms at an abstract level; the second one considers growing trees and keeps the
physicochemical aspects at a rather simplified level. Of course, in between these cartoon
representations there is a continuum of hybrid model classes, with agent-based models
with a detailed environment description as important examples.

In this contribution, however, we are occupied with the classification of time series
from a long-term ecosystem research site, intended as inputs to informed decision-making
about the most suitable model classes to successfully describe the system’s behavior.

2. Materials and Methods
2.1. Site Description

Hydrological catchments or watersheds covered with forests are often used as moni-
toring units of semi-natural landscapes, not least since these landscape units conceptually

allow for a closed input-output balance for matter fluxes. Such catchments should be small
to allow for a homogenous, even-aged forest stand, but they need to be sufficiently large
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to allow for a perennial stream. If there is only a single perennial stream, the catchment
is called first-order or “headwater”. The dataset of this study is derived from three first-
order headwater catchments with an area between 33 and 75 ha within the Bramke valley
(Harz, Germany; center coordinates 51.858° N, 10.423° E). The catchments are underlain
by fissured Lower Devonian rocks, with deeply weathered soils. They are dominated by
Norway spruce stands (Picea abies Karst. L). The observation period covers a full rotation
period of the forest stand, i.e., from clearcut to clearcut. For most of this time the catchment
was under monitoring of forest growth and hydrochemistry [14]. Since 1994 it also has
been a level II site of the ICP-Forests monitoring program [15].

All observations included here stem from three adjacent small headwater catchments
in the Harz mountains, known as “Lange Bramke” (LB), “Dicke Bramke” (DB), and “Steile
Bramke” (SB) (Figure 1). At LB, Norway spruce (Picea abies (L.)) is practically the only
species (62-70 yrs.), whereas at DB (1.1% of the area) and SB (14.4%) replanting with
European beech (Fagus sylvatica L.) and European alder (Alnus glutinosa L.) near streams
has occurred since 1986. The area has a long history of timber use and charcoal production
due to mining, and the Lange Bramke catchment was clearcut in 1947 as part of reparation
payments of Germany to Great Britain after World War II. It was then replanted starting in
1948. Environmental monitoring started the same year, first with discharge measurements
(runoff rates) of the stream at LB. After the clearcut, there were concerns about soil erosion
at the steep slopes. The influence of forest cover on the quantity and quality of streamwater
was in focus when the Bramke catchment study was implemented in 1948 [16]. Water
budgets were of major interest at the time. Starting in the 1960s, water samples were also
taken for water quality assessment. Today, the long-term hydrochemical data allow a
nuanced view of internal processes. Here, we use the maximal (biweekly) resolution to
characterize four major dissolved ions. In addition, we consider air temperature and runoff
coarse-scaled to the same resolution.

SB weir

LB weir

LB spring

Q361

Figure 1. The three catchments with four hydrochemical sampling points: LB spring (LBQ (Lange
Bramke Quelle (in German) = Lange Bramke Spring)) and LB weir (LBW), and DB weir and SB weir
(DBW and SBW). Rectangles are the forest inventory plots; 361, 361a, 366, and 367 are the numbers of
the forest inventory plots, some of them being ICP-Forest Level II monitoring sites. Meteorological
data are obtained at the clearing near and northeast of site 366.
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The time series analyzed here, except temperature, are all from one of these four
sampling points, and we will refer to them as DBW, LBQ, LBW, and SBW from now on.

2.2. Time Series from the Sites

Water samples from all four sampling points (cf. Figure 1) are taken at regular two
weeks intervals and analyzed for chemical composition. Among the many ions determined
in the chemical analysis, we selected only four: sulfate (SO427), nitrate (NO3 ™), chloride
(C17), and potassium ions (K*). Chloride is part of the atmospheric deposition, reaching
the soil dissolved in rain and in throughfall washed off from the needles; it is not actively
processed by plants and does not react with the soil matrix. It is thus considered as
“ecosystem-inert”. This is very much contrary to sulfate with its intricate impact on
soil chemistry through both bacterial reduction and inorganic sorption processes, while
nitrate, as part of the plant nitrogen cycle, is also processed by soil bacteria (process of
denitrification) but is not well retained in the soil matrix and can reach the groundwater.
Potassium is a major plant nutrient and can be retained in the soil. Thus, these variables are
important representatives for plant nutrition or are reflections of soil chemical properties,
i.e.,, they represent different influences from either physical or biological processes, or both,
on runoff hydrochemistry, and are therefore expected to exhibit different dynamics.

As these chemical concentrations in streamwater are influenced by precipitation,
temperature, radiation, and other variables, we expect them to display both long-term
trends and an annual cycle (seasonality). The impact of these two deterministic properties
of the time series on the complexity metrics will be investigated by comparing the original
time series with versions where the trend or the seasonality has been removed.

Water sampling started in the LB catchment at the end of the 1960s and in the 1980s for
the other two catchments (DB and SB). However, due to irregular sampling in the beginning
and some changes in the chemical-analytical methods over the decades, we extracted data
from all four sampling points for a common period of 33 years, 1991 to 2023. Due to certain
irregularities in the sampling intervals and some gaps contained in the records, we also
decided to use the data at regular 14-day intervals, averaging all observations within each
given period when more than one was obtained.

We supplemented the ion concentrations by time series for air temperature, taken from
a meteorological station within a clearing near the LB catchment (Figure 1) at 2 m height
above surface, and with runoff (stream discharge) from the Lange Bramke weir, which is
the longest and most continuous record available. Both are obtained at daily resolution but
were downsampled for our purposes to 14-day resolution.

The original dataset used in the analysis thus is a set of 18 time series (four ions at four
sampling locations, plus air temperature plus runoff at one location) of length N = 860
values each.

Over the lifetime of the forest stand (1948-2022), two major environmental changes
occurred at the Harz: an increase and decrease in the deposition of air pollutants by long-
range transport (acid rain), and climate change. These phenomena are reflected in the
trends for some of the variables, most prominently in the decline of sulphate as a result of
substantially reduced atmospheric deposition of sulfur dioxide (SO,). We also mention that
the catchments were recently severely affected by stand-replacing bark beetle attacks. The
planted species was considered as well-adapted to the site conditions, i.e., able to respond
and survive the environmental conditions to be encountered over its planned rotation
period of 120 years. However, the stand was practically killed (83% of the forest in the
catchment) by a bark beetle epidemic after 71 years only. We expect a dramatic response of
stream chemistry due to this damage; this is already seen for nitrate concentrations in the
last two years reported here, 2022 and 2023.
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2.3. Data Preparation and Analysis Methods

Many of the methods applied to our time series here require gap-free data or at least
are biased or difficult to interpret when gaps in the data are present. We thus spent some
efforts to generate time series at a completely regular temporal resolution with no values
missing. We conceptualized each time series as additively composed of trend, periodic,
and noise components, where the latter include a potentially complex mix of correlation
structure. We compared the partial series, e.g., the trend component only or the original
series detrended, and thus needed an operational method to decompose the series into
these three components. We used a general notion of a trend as any “static” component,
i.e., having no identified periods and no high-frequency noise present. Given the temporal
resolution and the time span covered, the only periodic component notoriously present
is the annual cycle. Among the existing methods for decomposition, we chose a fully
data-adaptive flexible method which at the same time can be utilized for gap filling as well:
singular system analysis [17].

2.3.1. Gap Filling, Detrending, and Deseasonalization: Singular System Analysis

Annual cycles are notorious for most of the water chemistry variables, basically induced
by yearly cycles of temperature and radiation, but also crucially determined by the biological
activity during the growing season and hibernation during winter. The presence of trends is
due to a mixture of the growth of the forest stands—the observation period is a significant
fraction of the average lifespan of a spruce stand after plantation—and nonstationary envi-
ronmental conditions (atmospheric deposition of air pollutants, climate change, disruptive
events). As a result, our typical time series would not pass any classical stationary tests.

Some of the 14-day intervals did not contain a single value for some of the ions, i.e., the
original time series also contained some gaps. As most of the methods require gap-free
data to avoid bias, one ought to fill the gaps prior to their application.

The following Figures 2-6 show gap-filled versions of the time series, representing the
whole data set going into all further analysis.

Figure 2 shows runoff at the gauged weir at Lange Bramke. The LB stream is perennial
but almost ceased in the very dry summers of 2003 and 2018. The temperature record
(14-day minimum: —12.4 °C, 14-day maximum: 22.4 °C) has a highly significant positive
trend in the observation period with a slope of +0.062 °C/year, which is, however, difficult
to identify in the figure.

Our tool to deal with all three issues of gap filling, detrending, and deseasonalization
is singular system analysis (SSA) in the version described in [18], i.e., a fully data-adaptive
decomposition method based on the lagged covariance matrix. SSA leads to an orthogonal
set of eigenmodes, ranked according to their explained variance, which are the eigenval-
ues of a singular value decomposition. SSA comes with one parameter, the embedding
dimension or window length L. No strict rules exist to find an optimal value of L; however,
N/L =2 —10is recommended. Periodic components appear as pairs of eigenmodes with
nearly identical eigenvalues, and single components with no detectable period smaller
than L (quasi-static) are considered as a trend. The periodic components are not necessarily
sinusoidal, nor is the trend necessarily monotonous.

We used the R package R-SSA [19] to decompose the time series. The SSA also
allows filling in missing data with several methods; in our case, we used the “Caterpillar”
algorithm [20], which requires selecting a group of SSA components to base the gap filling
on. This group should contain trends and major periodic components as a minimum. In
our case, we selected the components with the six highest ranks, the ones with the annual
cycle (or season) and the trend always among them. Isolated single missing values were
eliminated by simple linear interpolation.
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Figure 2. Runoff at the weir of the Lange Bramke catchment (LBW) (blue, left axis) and air temperature
at the meteorological station within the catchment (red, right axis), values aggregated to 14 days
based on daily observations, 1991-2023.
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Figure 3. Sulfate concentrations at the four locations (DBW, LBQ, LBW, and SBW). The clear decreas-
ing trend is due to recovery from acid deposition since the late 1980s.
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Figure 4. Nitrate concentrations in streamwater at the four locations, 1991-2023. The sharp increase
since 2022, exceeding even the concentration range displayed here, is due to forest dieback induced
by a bark beetle attack.
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Figure 5. Potassium concentrations in streamwater at the four locations, 1991-2023.
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Figure 6. Similar to Figures 2-5, here for Cl concentrations.

After gap filling, the complete time series were used to identify the components
containing the trend and the ones with the annual cycle. An overview of their contribution
to the total variance of the time series is provided in Table 1. This left us with six versions of
the respective time series: the original one, a detrended one where the trend is subtracted
but the annual cycle is retained, one where the annual cycle is removed but the trend is
retained, the trend alone, the annual cycle (season) alone, and the residual time series where
both the trend and the annual cycle have been removed. Further analysis was conducted
on all six versions and then compared.

Table 1. Percentage of explained variance relative to the total variance of the original time series for
the variables investigated, based on SSA decomposition.

Variable Process % Variance per Location
Temperature Trend 0.97
Season 80.99
DBW LBQ LBW SBW
Runoff Trend - - 0.48 -
Season - - 20.69 -
Trend 86.05 57.43 24.00 73.93
Cl Season 4.42 5.57 19.15 4.90
Trend 39.74 2451 0.76 19.41
K Season 31.84 46.11 45.89 4.48
NO; Trend 72.06 74.16 4541 20.59
Season 7.39 11.45 30.27 32.56
SO, Trend 7591 88.02 64.65 70.12

Season 3.17 4.46 15.33 6.68
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It is obvious from Table 1 that in most cases, the trend and seasonal components
combined contain a large fraction of the total variance. On the other hand, there are major
differences between the variables, as is also recognizable from the time series plots, e.g., for
runoff and K at LBW, the trend is negligible, whereas for SOy, the trend dominates by far
over the seasonal component. NO3 has a very strong trend, but that consists of a decline
during the 1990s and an increase in the last years, so it is non-monotonous.

The percentages reported in Table 1 do not reveal whether this periodic component is
synchronized between the variables, or if they show different phases but with a constant
phase relation. Insight into these connections can be gained by extracting the seasonal com-
ponent only (usually a pair of eigenmodes of the SSA decomposition) and then calculating
the instantaneous phase using the Hilbert transformation of the time series. Time series
of the difference between the two instantaneous phases were constructed and interpreted
as lag times between the two annual cycles by converting it to time scales. The degree of
synchronization, a measure of the stability of the phase relation between the two, can be
obtained by calculating the mean resultant length [21].

The SSA decomposition is illustrated in Figure 7, using Cl at LBW as an example.
For most variables, removing the seasonal component or the trend, or both, to obtain
the residual does not change the visual appearance of the time series substantially. This
observation indicates that the stochastic component dominates the dynamics. The extracted
trend and seasonal components separately (the lowermost two time series in Figure 7)
exhibit rather smooth and regular dynamics and are the deterministic part of the time series
in this framework of additive SSA decomposition.

ClLBW
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without season — residual — trend
— season
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Figure 7. Example of the SSA-based time series decomposition: CI concentrations at LBW. The
individual time series have been shifted for easier identification, e.g., the original time series was
increased by a constant of 5 mg/L. From top to bottom: original time series; original minus annual
component; original minus trend component; residual = original — trend component — annual
component; the trend component alone; and the annual component alone.
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Note that the trend component generated by SSA is a nonlinear, non-monotonic function.

2.3.2. Permutation Entropy and Complexity

We used symbolic dynamics for quantifying the entropy and complexity of the time
series. Following the seminal approach of [22], we constructed ordinal patterns from the
real-value series. The crucial parameter to do that is the embedding dimension (aka the
word length or pattern length) D. Considering that, in order to capture as much structure
on different timescales as possible, one wants to maximize D, but the factorial explosion
of the number of possible patterns quickly prevents statistical saturation for a given time
series length N, we respected the rule of thumb that N > 5D! should hold and thus fixed
D = 5. This implies that the temporal distance between the first and the last value in
any pattern is roughly two months (precisely 56 days). The regularity of the annual cycle
is undetectable with these settings. Ordinal pattern analysis is strongly dependent on
temporal resolutions.

From the ordinal pattern probability distributions (OPDs), we calculated the Shannon
entropy, in this context also known as the permutation entropy, and the permutation
complexity, also known as the MPR complexity, following the seminal work of Rosso and
co-workers [8,23]. Permutation complexity is based on the permutation Jensen-Shannon
divergence [24,25]:

1SD(p,q) = STy~ 2 (S(p) + 5(9)) )

with S(p) being the permutation entropy for the OPD p, and with white noise with its
equidistributed OPD g as the reference process. The square root of |SD can be shown to be
a proper metric [25].

The entropy—complexity plane contains regions which are unreachable for any time
series; the accessible area is delimited by a lower and an upper limit curve, with their shape
depending on D. It also turns out that power law noise, i.e., correlated noise whose power
spectral density scales as P(f) ~ f~*, forms a single one-dimensional curve in this plane.
This curve was used as a reference to judge on the type of stochastic process we observed
in our time series.

2.3.3. Fisher Information

As a third metric quantifying an information-related property of the time series, we
considered the Fisher information adapted to ordinal pattern series [12]:

F(P) = 510 (Vi — AP (2)

where P denotes an ordinal pattern distribution and the p; are the probabilities of the
patterns. The Fisher information is not a unique quantity, since a numbering scheme
for the patterns is required, inducing an ambiguity which is, however, insignificant for
interpretation purposes, as our experience indicates. In this work, we used the coding
scheme of Karsten Keller [6], and D = 5 as before. A two-dimensional plot of Fisher
information versus permutation entropy is not known to have limit curves, i.e., every point
in the square [0, 1] x [0, 1] is reachable, and the positions of the time series in this plot can
be used to draw conclusions about stochasticity and to compare to reference processes.

2.3.4. Rényi and Tsallis Entropy and Complexity

Permutation entropy and complexity can be considered as special cases of a class of
entropies and complexities, introduced by Rényi [26] and Tsallis [27], respectively. Either
class is parametrized through a non-negative real number; within the concept of Rényi,
the parameter « is used to apply power weights to the probabilities of Equation (1), either
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enhancing (¢ < 1) or suppressing (¢ > 1) rare patterns. The Rényi approach assigns
power weights to the probabilities of the ordinal pattern distribution for the calculation of

the entropy:
1 D!

- - o
H“(F’) - (1 _ l’()ln D'ln Zl:] pl (3)
In the case of the Tsallis entropy, its parameter is usually called g, a generalized
logarithm log, is introduced, and the Tsallis entropy is defined as

1 D! 1
Hy(p) = ﬁZi:l pi logqu (4)

Both entropies converge to the usual Shannon/Boltzmann entropy when « — 1 or
g — 1, respectively. Only the Rényi entropy shares the property of extensivity, i.e., additiv-
ity in the case of independent distributions, with the conventional entropy.

Starting from these entropy generalizations, corresponding complexities were defined,
formed as the product of the respective entropies with appropriate distance measures to a
reference process (white noise), and normalized with a maximum distance.

The resulting Rényi complexity [28] allows for a qualitative distinction between
stochastic and deterministic—chaotic time series; for the former, in an entropy—complexity
plane, varying « leads to a monotonous behavior of both entropy and complexity, which is
not the case for well-studied deterministic maps. In the case of the Tsallis complexity [29],
while the deterministic processes lead to open curves with two ends, the stochastic ones
form closed loops when running through all q values. The area covered by the loops is
related to the Hurst parameter for the stochastic series.

2.3.5. Tarnopolski Diagrams

Another method to locate our time series in the context of standard reference processes
is provided by the Tarnopolski diagram [30]. Here, one plots two rather simple and
parameter-free quantities of each time series against each other: the number of turning
points T and the sum of squared differences of adjacent values, also known as the Abbe
value A. Reference stochastic processes like fBm or fGn build invertible functions in the
T—A plane. Properly normalized, they are largely insensitive to the exact time series length;
however, Tarnopolski found exact equations for the two reference processes, fBm and {Gn,
depending on the Hurst parameter at any time series length [31].

2.3.6. Horizontal Visibility Graphs

A conceptually simple geometric visualization of the correlations (in a rather general
sense, not restricted to linear ones) can be articulated through the following question:
sitting on a point in the time series, how far could you see in a horizontal direction before
other (higher) values block your view? This is the idea behind horizontal visibility graphs
(HVGs) [32], a member of the family of complex networks. The resulting network of
visibility is analyzed, e.g., through its degree distribution; for some processes, it is known
that the probability of finding a network node with degree k is exponentially decaying:

P(k) = %e‘A“‘/Gk ()

which is a robust result independent of the time series distribution [33]; in the absence of
autocorrelations, there is even the analytical result Ay = 11(3/2). From the observed
degree distributions for our time series, we estimated the slope of the relation (5), i.e., Agyg,
and compared it in particular to the uncorrelated case, and among the time series.
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2.3.7. Complexity of Ordinal Pattern Positioned Slopes (COPPS)

Another recent approach to quantifying the complexity of time series is combining
ordinal pattern statistics and network construction. It is based on the slopes present in the
ordinal patterns [34]. Encoding the ranks within a pattern of embedding dimension D as
integer numbers, one determines the maximum slope (differences of ranks) within the pattern
and its position (ordinal pattern positioned slope, OPPS). Grouping OPPSs together with a
group length s leads to a transition network of depth s. The ability of a system to generate new
patterns whenever the network depth s is increased constitutes the notion of complexity in
this context. Thus, the COPPS variable As (D) introduced in [34] quantifies the growth rate of
the OPPS patterns when the network depth is increased by one unit. For reference processes,
this complexity indicator is robust already at small to intermediate time series lengths. We
compared the COPPS values obtained for our time series with a few of the reference processes.

3. Results

For each of the 18 time series, we derived six different versions from the SSA de-
composition: (1) the original as obtained from field samples; (2) the one where the trend
component has been removed; (3) a set where the respective annual cycles have been
removed, but the trends remain; (4) the version where both the annual cycle and the trend
have been removed, which we call the “residual” time series; (5) the pure annual cycles;
and (6) the pure trend components. Note that the last one is nonlinear and might be
complicated, although not complex in terms of our notion of complexity.

We compared the different versions of the time series for each method, focusing on
the difference in dynamical structure obtained. We started, however, with a linear method
to visualize the correlation between the datasets as a correlogram in Figure 8.
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Figure 8. Correlogram of the original time series. Both the color as well as the size of the circles
indicate the Pearson correlation coefficient of each pair of time series (its absolute value in the case of
the size). The main diagonal (with R? =1)is blanked out for better visualization.
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3.1. Correlograms, Phase Shifts, and Jensen—Shannon Divergence of the Time Series Set

The correlogram identifies the group of Cl ions as rather closely connected; it is much
less so for K, apart from the pair of K LBQ/K LBW, which are from the same stream.
NOj is again more strongly connected, and SO, even more so. Since potassium (K*) is
strongly processed by plants, this might point to differences in the vegetation dominating
the three catchments.

There are also some anti-correlations, e.g., between NO3 and SOy, but also between
runoff and K, NOj3, and SOy4. Given the strong seasonality, this indicates that these ions are
not in synchrony: there is a lag of several months between the different pairs.

Correlograms for other variants (trend only, annual cycle only, residuals) are shown in
the Appendix (Figures A1-A3).

The presence of non-synchronous dynamics is partially confirmed by the phase shift
analysis, where we calculated the instantaneous phase between the annual components of
two variables, recalculated to a time lag bound between —6 months and +6 months.

In Figure 9, the time lags between NOj3 concentration from all four locations and
temperature are shown. The proper time lag revolves around 6 months and flips around
between +6 months and —6 months, which means the same shift for annual cycles. Nitrate
in runoff is high when root uptake and temperature are low, and we used the negative
temperature instead. The proper interpretation of Figure 9 is, therefore, that nitrate and
temperature are half a year apart, easily explaining the negative correlation coefficient
seen in the correlogram. The phase shifts are reasonably stable most of the time, although
they also contain periodic components of unknown origin. In the last two years, NO3 and
temperature have decoupled from each other due to tree mortality, so the biological control
on nitrate largely disappears.

Phase shift of NO3 concentration against temperature

1992

1994

1996

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022

Figure 9. Phase shift between NOj3 concentrations and air temperature. For better visualization,
temperature went into the instantaneous phase calculation with a reversed sign, which basically
means a shift by six months.

The phase shift between SOy at all locations and air temperature, analogous to Figure 9,
is shown in Figure A8.



Entropy 2025, 27, 381

14 of 31

Months

Figure 10 shows the phase shift between SO4 at SBW and NOj at all locations. There
is no obvious coupled cycle between the two, but both ions are dominated by biological
processes and also through soil interactions. For LBQ, LBW, and SBW, the sulfate signal
comes mostly first, but the lag is rather small, typically less than a month. For DBW,
however, NOj3 is completely out of phase with lags around 6 months, the biggest possible.
Again, in the last two years, NO3 has decoupled from the SO4 dynamics.

Phase shift of NO3 concentration against SO4 at SBW

— NO3 DBW — NO3 LBEQ — NO3
LBW — NO3 SBW

1992

1994

1996

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022

Figure 10. Phase shift between NOj at all locations and SO, at DBW. Positive values imply that SO,
comes first in the annual cycle. Since the phase shift is cyclic (minus six months is equivalent to plus
six months), we used the negative absolute value for the phase in the case of NO3 at DBW, which
would otherwise flip around frequently.

Phase shift analysis for a pair of time series can be condensed to a single number, the
phase synchronization index p (0 < p < 1). An overview of the phase synchronization
index for all pairs of time series is provided in Figure A7.

As an alternative approach to visualizing the connections between the different vari-
ables, we calculated the Jensen-Shannon divergence of the respective ordinal distributions.
As this is a distance measure (We are aware that a proper metric is only obtained when
using the square root of the JSD instead. This is however not a relevant aspect for our
application here) with JSD(p, p) = 0, and we wanted to compare to the correlogram, we
used the complementary JSD*(p,q) =1 — JSD(p,q) with 0 < JSD*(p,q) < 1, and values
close to 1 if the two distributions were rather similar, as with the correlation coefficient.

Figure 11 displays JSD* for the 18 time series. Note that we are comparing pairs
of temporal structures, as expressed through the ordinal pattern distributions at D = 5.
Synchronicity of pattern occurrences is not part of the comparison directly; you might shift
one time series relative to the other and still get the same result. There are three pairs of
variables which are very close to each other in the ordinal pattern space: NOj3 at the two
locations LBQ and LBW (which is the same stream); NO3 SBW and Runoff; and SOy at
SBW and at DBW. Some of the pairs which are Pearson-anticorrelated appear with small
values for [SD* in Figure 11. The pair (504 LBW, NO3s DBW) which particularly showed
this behavior in Figure 10 had a low but not exceptional value for [SD*.
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Figure 11. Complementary Jensen—-Shannon divergence (JSD* = 1 — JSD) for the original time series.
The trivial main diagonal entries are suppressed.

3.2. Entropy—Complexity Plane

The permutation entropy (PE), permutation complexity (MPR), and Fisher information
(Fis) were calculated with D = 5. For the PE versus MPR plane, the results are shown in
Figure 12.

Most of the time series are close to, or even on, the k noise curve. The removal of
the trend and/or the annual component allows them to move a bit upwards to lower
entropy and higher complexity, but still along the powernoise curve. The trend and annual
component alone, however, occupy an area on the left side of the maxima of the curves,
with corresponding low values for the entropy. In particular, the “trend only” variant
exhibits higher complexity values than the powernoise would indicate, demonstrating the
less stochastic nature of the trend component. The OPDs of these time series also have a lot
of missing patterns.

3.3. Entropy—Fisher Information Plane

The conclusion from Figure 12 that the original and detrended series are quite compat-
ible with k noise cannot be drawn in the same manner for the entropy—-Fisher information
plane (Figure 13). Again, the trend and annual component alone are very distinct from the
other variants, but for the latter, every time series shows higher Fisher information than
the k noise. This indicates that the OPDs for them are more heterogeneous; in particular,
some of the patterns might occur very rarely or not at all at that time series length, which is
contrary to the k noise, where all patterns appear. In fact, each of our time series exhibits
missing patterns in all variants, resembling deterministic parts still contained in them.
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Figure 12. The entropy—complexity plane (PE, MPR) for our time series. The plot symbol indicates
the location, the size of the symbol corresponds to the variant (“original” to “trend only”), and the
color refers to the variable observed. The upper and lower limit curves for D = 5 as well as the

powernoise curve are also shown.
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Figure 13. The Fisher information—entropy plane for our time series. For the legend, see Figure 12.
The curve for k noise is plotted for reference.
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3.4. Rényi and Tsallis Entropy—Complexity Planes

Varying the Rényi parameter « across a wide range (we chose 0.01 < a < 100)
ensures that the whole range of possible enhancements or discriminations for the pattern
probabilities is covered. The result is one curve per variable per treatment. This is shown in
Figures 14 and 15. For the original time series (Figure 14) and the three variants where part
of the signal was removed (Figures A4-A6), all curves have the common property that Rényi
complexity decreases with increasing Rényi entropy. This is a behavior characteristic of
correlated stochastic processes. The opposite is true for the trend and the annual component
(Figure 15), as these resemble deterministic processes.

The Tsallis parameter g also was selected from the interval 0.01 < g < 100; note that
q = 0 is a pathological case. Figures 16 and 17 show the (H,, C;) planes for the original
time series and for the annual components, respectively. Note that none of these curves
are closed loops, contrary to the powernoise reference processes (the white noise (k = 0)
curve is actually just a point at (H;, C;) = (1,0) independent of q). This is due to the
presence of missing patterns: the authors of [29] have shown that the Tsallis curves start
in our case at (Hy+, Co+) = (1752, m(%g;m)) when g — 0", where m is the number of
missing patterns. The latter are notorious in deterministic time series, but also occur in
stochastic processes, depending on the embedding dimension [6]. Still, the original time
series curves for H; and C; resemble very much the loops of stochastic processes (Figure 16),
whereas the annual component does not (Figure 17). They are clearly open curves. For
their endpoints for g — oo, the authors of [29] provide an analytical equation, which can
be checked against the value obtained for the largest g used; our choice 4 = 100 is clearly

sufficiently asymptotic.

Renyi Entropy-Complexity Original

-+ Noise
= Variables

CIDBW  — NO3 SBW
ClILBQ  — Runoff

ClILBW  — S04 DBW
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— K DBW S04 LBW
— KLBQ S04 SBW
— KLBW Temp

— K SBW White noise
— NO3 DBW — k=1 noise
— NO3 LBQ k=2 noise

0.25 0.50 0.75 1.00
Renyi Entropy

Figure 14. Rényi entropy—complexity plane for the original time series. Three powernoise processes
are displayed for comparison.
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Figure 15. Rényi entropy-complexity plane for the trend components. Three powernoise processes

are displayed for comparison.
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Figure 16. Tsallis g-entropy versus q-complexity for the original time series. The scaling of the
entropy axis is deliberately chosen to cover the whole possible interval [0, 1]. Powernoise curves for
k =0, 1 and 2 are indistinguishably part of this set of curves.
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Figure 17. Same as Figure 16, but for the annual components of the time series. The powernoise
curves occupy a quite different region of the plane.

3.5. Tarnopolski Diagram

The representation of a time series in the Abbe value/turning points diagram is
parameter-free and does not use ordinal pattern statistics. Time series values are taken
at face value without preprocessing. For some stochastic reference processes, the inventor
of the method derived analytical results depending on time series length [31] and indicated
regions in that plane occupied by time series models like ARMA(p, q) processes. The equation
refers to the mean value of A and T when generating a large set of similar time series of the
given length; however, the finite size effects are already quite small for our N = 860.

Figure 18 shows A and T for all time series in all variants, together with the curves
for fractional Brownian motion, fractional Gaussian noise, and k-noise (the latter being
a numerical result). The trend and annual components have a zero or very low 4, quite
contrary to the original and the detrended variants. The latter do not fit nicely to any of the
three processes, cover a large range of A values, and have T values between the fBm and
the k noise. These points certainly do not represent a one-dimensional curve and will not
fit to any simple stochastic process. In that regard, the Tarnopolski diagram gives a rather
different perspective on the time series compared to the entropy—complexity diagram.

3.6. Horizontal Visibility Graph Analysis

The construction of the network of visibilities, considering every value of a time series
as a node and two nodes connected with a link when the older one can “see” the later
one in horizontal direction, is another nonparametric way to characterize the dynamical
structure of a time series. From the networks obtained, we extracted just one quantity:
the slope of the decay of the degree distribution, assuming the exponential relationship
of Equation (5). This assumption is empirically justified for many time series; however,
at very large degrees, it always fails since there are gaps in the degree distribution since
these degrees are simply non-existent in the distribution. We therefore used a cutoff for the
survival function of the degree distribution adapted to our time series length.
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Figure 18. Tarnopolski diagram for the time series together with three different reference processes.
The turning points are normalized to cover strictly the interval [0, 1]; the Abbe value extends to 1.5,
which is reached by the fBM but not by our datasets.

The slopes Ay for the exponential decay for the horizontal visibility graphs obtained
from the time series in this way are shown in Figure 19. Here, the only reference process with
a known theoretical value for this slope is white noise, where Ay "N = In(3/2). This is
drawn as a horizontal line in the figure. For colored noise, it is not even known whether the
degree distribution is of an exponential type, and even assuming it is, the spread of estimates
for Ay for relatively short time series, as is the case here, is substantial [7], so we do not
show them. However, if anything, the slope values would be larger than for the white noise.

Horizontal Visibility Graph slopes
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Figure 19. Slopes of the decay of the degree distribution of horizontal visibility graphs.



Entropy 2025, 27, 381

21 of 31

The HVG slope is rather insensitive to the removal of a trend component, and the
original, detrended, and residual time series are by and large close to the white noise
case from this perspective. However, a notable exception is temperature, and to a lesser
extent also NO3; and SOy at LBQ. The annual and trend components, however, extend to
much higher slopes; their networks thus have a much tighter degree distribution, as is also
reflected in smaller mean degrees for them. Notable outliers for the annual cycle are K at
SBW (with a particular small annual amplitude, explaining only 4.5% of the total variance)
and SO, at both LBQ and LBW.

3.7. COPPS Analysis

When applying the COPPS procedure to measured time series, the choices for the net-
work depth s and the embedding dimension D are strongly constrained by the length of the
time series, N. The number of possible groups/patterns is As(N) = ((N —1)% +1)*+1 [34].
The resulting complexity As(D) is also strongly dependent on N.

With our time series length N = 860, we chose s = 1 and D = 4. Figure 20 shows the
resulting Ay (4) for all variants. These were compared to the results for Gaussian white
noise, pink noise (k = 1), and red noise (k = 2), and the logistic map at fully developed
chaos (r = 4), all of which were generated with the same length N = 860. The results for
these processes are rather robust, repeatedly generating time series of the same length and
calculating A leads to rather narrow distributions.

COPPS complexity analysis
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Figure 20. The complexity parameter A;_1(D = 4) of the COPPS analysis [34]. Four reference
stochastic processes are shown for comparison.

Removing the trend or the annual component always increases the complexity. The
magnitude of the effect is related to the strength (explained variance) of the component, as
expected. Two extreme cases are the temperature, where removing the annual cycle lets the
A parameter jump to almost the white noise case, and K LBW, where removal of the trend
does not change A at all; the trend component for this ion has an explained variance of only
0.76% (Table 1). The complexity of the residuals is the highest in all cases. The opposite is
true for the A values of the trend and annual components alone; they all are rather low, well
below the reference value for red noise, with the trend A values being generally the lowest.
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It would be possible to calculate an effective powernoise—k for each time series, i.e., one
where the A value of the noise coincides with that of the observed time series. However, the
relative position of the noise and the deterministic—chaotic map is not stable as a function
of the time series length; at higher N, the noise curves cross the logistic map, all converging
to a value of 1 for very long series, whereas the logistic map has a limit value well below
that. Thus, conclusions on which “color” our time series have (which noise process they
are resembling) depend on their length.

4. Discussion

The complexity analysis of the time series from the Bramke valley, and, we would
claim, also for similar observations of water chemistry from other catchments, reveals that
the stochastic component overwhelmingly determines the dynamics of the system. From
a linear perspective, this is surprising since the trend component and the seasonal cycle
explain a lot of the total variance, in a few cases more than 90% (Table 1). However, the
nonlinear properties of the time series dominate the complexity metrics considered.

Permutation entropy and complexity, Fisher information, and in particular Rényi
and Tsallis entropy and complexity classify the trend and seasonal cycle as deterministic
signals. Although we chose a linear decomposition technique, SSA, for disentangling
the deterministic from the stochastic part, the metrics show strong non-additivity. Some
quantifiers are almost unaffected by removal of one or even two of the deterministic signals,
thus the residual is still a rather complex signal; it is in this sense that the stochastic parts
of the time series are rather strong.

4.1. Trend and Seasonality

The ecosystems at the Bramke valley are exposed to important environmental trends
and disturbances. The major concern of the 1970s and 1980s, acidification, basically came
to halt when flue-gas desulfurization was set into action. The consequence is a strong
decline in the SO4 concentrations in the streamwater of all four locations. Since this change
is spatially large-scale, it is no surprise that the trend components for SOy are strongly
correlated to each other (Figure A2). SO4 at DBW and SBW is also strongly correlated
to temperature (r = 0.71 and r = 0.88, respectively), whereas at LBW and LBQ, SOy is
anticorrelated (r = —0.77 and r = —0.85, respectively) with a stable phase shift of ca.
5 months (Figure A8). The annual cycle at LB reflects the expositional difference between a
dry south-facing slope and a wet north-facing slope with SO, peaks in late winter. At the
steeper, parallel sloping catchments DB and SB, the annual variation reflects probably an
SOy depth gradient in soil storage.

For CI, there is no linear trend but there is a decadal structure (Figure 6) which is also
simultaneously present at the four locations, thus the correlation coefficients for the trend
component are also very high in the Cl group (Figure A2). The Cl found in the streams is in
large part from sea salt spray, which also acts on broad spatial scales.

For NOj3 and K, the trends are more diverse between the four locations: for K, the
strength of the trend component and the amplitude of the annual cycle vary a lot between
locations. At SBW, which was limed in 1989 and is the only catchment with a feasible
areal cover of deciduous trees, NO3 concentrations are much higher for most of the period
compared to the other three ones; and the K dynamics are quite different from all other
ions, as revealed already by the correlogram.

The residuals still show long-range correlations; it is unlikely that these are induced
by periodic components at longer timescales, as those were not discovered by the SSA.
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4.2. Complexity

The trend and annual components show low entropy values and a MPR complexity
higher than that of k noise at the same entropy level, again confirming their deterministic
nature. The other variants are compatible with k noise, i.e., follow that curve, varying in
their equivalent k value and thus in correlations strength. NO3 appears to be the most
complex; at the other end of the complexity spectrum, temperature residuals are almost
white noise.

Contrary to pure long-term noise processes, all our time series contain missing patterns.
For the stochastic variants, the number of missing patterns varies between 1 and 10 (out of
120). The most complex variable, NOj3, also has the highest number of missing patterns
(Figure A9). There is still the possibility that the missing patterns would occur for longer
time series with the same dynamics [35]. For the deterministic parts, this number is
substantially higher than expected, around 100 (Figure A10).

The Fisher information for the stochastic variants (Figure 13) is rather clumped to-
gether, but in all cases higher than for the k noise.

The g- and a-entropies and complexities confirm the huge difference between the
stochastic and the deterministic parts of our time series. It is difficult, however, to draw
conclusions on differences within the stochastic group. As the area covered by the (almost)
loops for the g-entropy—complexity relationship depends on the Hurst parameter for {BM,
one could calculate an effective Hurst parameter for our time series and compare it to the
one obtained with more conventional methods.

4.3. Abbe Values

The Abbe values of the Tarnopolski diagram might be used as a classifier for the
dynamics of our time series, as they spread over almost the whole available range. They do
not seem to make a distinction between the locations easy; the more complex variables (as
judged from the MPR plot and Fisher information plot) appear at lower Abbe values. For
the stochastic part, the number of turning points is generally higher and the position of our
time series interpolates between fBm and k noise.

4.4. HVG Slopes

Among the quantifiers considered, this might be the least discriminating for the
stochastic parts. Most of the Apy; values obtained are rather close to white noise, and
removing trend or seasonality has a minor effect. The slopes for the deterministic parts are
very different, so this basic distinction is possible also here.

4.5. COPPS

The slopes for the ordinal patterns interpolate between red and pink noise in most
cases for the stochastic parts. The effect of removing trend or seasonality differs between
the variables and is related to the strength of these components (explained variance percent-
ages). The slopes increase from the original to the residual, and reach values compatible
with the logistic map, e.g., for SO4. The location SBW reaches the highest slopes for the
residuals in three of the four cases. The trend and seasonal components are characterized
by rather low A values. The COPPS slope seems to be an alternative good indicator of
the complexity of a time series; however, the strong dependence on time series length
necessitates comparisons only between time series of the same length.

4.6. Summary

Complexity and information measures were used here as efficient tools comparing
and classifying this set of environmental time series. They separate the classification



Entropy 2025, 27, 381

24 of 31

task, e.g., between stochastic and deterministic parts, from the more difficult issue of
reconstructing a given time series. We found similarities in dissolved ions across sites
(especially Cl), but also highly site-specific behavior (K at SBW). Especially for the behavior
of variables for which biotic interactions are implicated (K, NOs, water), reference processes
were difficult to identify. Some of the time series are easy to classify by these methods, but
difficult to reproduce (and explain) by the respective process-based models. The suite of
methods presented here is a rather stringent test environment for them.

Complexity measures have become a critical tool to compare documented environ-
mental behavior relative to candidate references processes from various disciplines. They
may thus form a building in search of a common formalization of environmental processes.
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Appendix A. Additional Figures
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Figure A1. Correlogram for the annual cycle alone.
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Figure A2. Correlogram for the trend component alone.
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Renyi Complexity
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Figure A3. Correlogram for the residuals (after removing both the trend and the annual component).
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Figure A5. Rényi entropy—complexity plane for the time series with the trend removed. Similar to

Figure 14.
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Figure A6. Rényi entropy—complexity plane for the residual time series. Similar to Figure 14.
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Missing patterns
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Figure A9. The number of missing patterns for the original, detrended, deseasonalized, and residual
variant.
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