

Assessing the Role of Irrigation in Groundwater Recharge in the Po Valley

Olfa Gharsallah, Sara Cazzaniga, Enrico Antonio Chiaradia, Michele Eugenio D'Amico, Michele Rienzner, and Claudio Gandolfi Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DiSAA), Università degli Studi di Milano, Milan, Italy

(olfa.gharsallah@unimi.it)

General context

CC DY

General context

<u>Traditional irrigation systems</u> - water is drawn by gravity from surface sources and distributed to fields through an extensive network of irrigation canals.

- **1. Supports** agricultural productivity
- 2. Potential effect of groundwater recharge

Methodology and preliminary results

Preliminary estimates of groundwater recharge in the Po Valley were made using the IDRAGRA model (<u>https://idragra.unimi.it/</u>), in the context of MidAS-Po project, considering agrometeorological data, soil characteristics, land use, irrigation methods, and interactions with the shallow aquifer.

Image credits: Businessicon13, Karamat Ali, Harfan Haq, cheed, Vectors Point, Anastasia Latysheva, il Capitano, Jo, Edy Subiyanto, NAPISAH, 4B Icons, Alzam, Kevin, Abdo, uyun from Noun Project.

https://www.visitferrara.eu/it/da-vedere/fiume-po

Thank you for your attention

General Context

Methodology

DiS

Methodology

Input data - Soil

1. Creation of a district database containing (in table format) the hydro-pedological information collected in the different regional catalogues

STRATEGY: identify a representative profile for each soil type, with the inputs required by the most demanding PTF (Ungaro&Calzolari)

- **2. PTF selection and application** for estimating hydrological parameters (bulk density, retention curve and Ksat)
- **3. Attribution of the hydrological parameters** of each soil type **to the polygons** of the soil map

Input data - Soil

UNIVERSITA DEGLI STUDI DI MII DIPARTIMENTO DI SCIENZE AGRARI E AMBIENTALI - PRODUZIONE, TERRITORIO, AGROFNERGIA

Input data - Soil

Saturated hydraulic conductivity (Ksat) calculated at 1 meter depth

Available Water Content (AWC) calculated at 1 meter depth

NIVERSITA DEGLI STUDI DI MILANO Ipartimento di scienze agrarie Ambientali - produzione, eddittodio actodenedia

Input data - Land use

Original Corine Land Cover Dataset

- Corine Land Cover 2012 and 2018 from European Enviroment Agency in "Copernicus -Land Monitoring Service"
- 44 land use classes (5 macro-categories, 3 classification levels)
- Spatial resolution: 25 ha

Elaborated Corine Land Cover Dataset

- Checking Corine Land Cover with respect to regional land use maps
- Semplification of the Corine classification into 8 macro land use classes

Input data - Meteo

Original E-OBS Dataset

- E-OBS meteorological dataset obtained from the interpolation of ground weather station data, from European Enviroment Agency in "Copernicus - Climate Change Service"
- **Daily series** of Tmin, Tmax, Prec, RHavg, Wind (10m), solar radiation
- Original spatial resolution: 9 km x 9 km
- Historical horizon: from 1950 to now

 Identification of 105 weather stations as the centroids of E-OBS regridded cells (21 km x 21 km) within the MidAS-Po domain + 10 km buffer

Input data - Irrigation methods

Original ISTAT 2010 Dataset

Elaborated ISTAT 2010 Dataset

The ISTAT 2010 Agriculture Census contains the predominant irrigation method in each municipality Elaboration and correction of the original data:

- intersection with land use map
- local integration of SIGRIAN* information about irrigation methods

Input data - Water table depth

- Water table depth calculated from the piezometric map by Giuliano et al. (1998) and from DTM (1 km)
- Negative values of water table depth (water table depth > ground level) were corrected at 0.5 m
- The water table depth was assumed constant throughout the simulation period (2010-2022) → both interannual and seasonal

Model implementation

Input Data	MidAS-Po simulation
Land Use	Land use map derived from Corine Land Cover 2018 elaborated (8 classes)
Meteo	Meteo data derived from E-OBS elaborated
Soil	Soil map derived from regional soil maps elaborated
Irrigation methods	Irrigation methods derived from ISTAT 2010 Agriculture Census elaborated
Irrigation mode	Irrigation mode 'FIXED VOLUMES' (<u>https://idragra.unimi.it/</u>)
Groundwater	Drainage considering both interaction and not interaction with shallow water table
Spatial resolution	0.25 km ²
Temporal horizon	2010 - 2022

Results - Irrigation requirements

DiS

Results - Validation of irrigation requirements

SIGRIAN: National information System for the management of water resources in agriculture

Results - Percolation from irrigated area

Midas-Po Percolation 2020

no interaction with shallow water table

Legend [mm/year] 💻 100 - 200

< -500

-500 - -400

-400 - -300

-300 - -200

-200 - -100

-100 - 0

0 - 100

200 - 300

300 - 400

400 - 500

500 - 600

600 - 1000

>5000

1000 - 5000

Methodology

Annual water supplied from irrigation districts

Simplified model seepage from irrigation network

PICO Navigation

- Click on the buttons for more information
- Click on the icons in the upper right corner to go back to previous sections

Seepage from irrigation network

Seepage from irrigation network

Results - Total groundwater recharge

PICO Navigation

• Click on the icons in the upper right corner to go back to previous section

DiS

Critical year 2022 - Reduction coefficient of water supplied

DiS

Application of a reduction coefficient on the total groundwater recharge, due to the limited irrigation water supplied

$$\left(1 - \frac{Water\ Supplied_{2022}}{Water\ Supplied_{avg(2016-2021)}}\right) *\ 100\ [\%]$$

- The resulting **preliminary estimate** of groundwater recharge **driven by irrigation practices** marks a significant step forward in understanding the role of irrigation in aquifer replenishment across the Po Valley.
- Further investigations will be conducted to more accurately quantify the contribution of traditional irrigation systems to groundwater recharge. This will involve improving the quality of the input data, including:
 - Volumes of water diverted from canals and extracted from aquifers;
 - > Detailed information on local irrigation methods and practices;
 - > The use of regional land use instead of the global data (CORINE-LAND COVER)
 - > More precise data on groundwater table levels.
- These efforts aim to demonstrate that **traditional irrigation systems**—characterized by water distribution through canals and surface application in fields—despite **often being** considered **inefficient**, play a **crucial** role in **sustaining** the groundwater **recharge** in the Po Valley, which is marked by a **strong interaction** between surface water and groundwater.

Image credits: Businessicon13, Karamat Ali, Harfan Haq, cheed, Vectors Point, Anastasia Latysheva, il Capitano, Jo, Edy Subiyanto, NAPISAH, 4B Icons, Alzam, Kevin, Abdo, uyun from Noun Project.

https://www.visitferrara.eu/it/da-vedere/fiume-po

Thank you for your attention

