Boundary Pressure: A Unique Window into Atlantic Transport Variability

Andrew Styles¹, Emma Boland¹, Chris Hughes², Saranraj Gururaj², Dani Jones³

¹British Antarctic Survey, UK

²Univeristy of Liverpool, UK

³University of Michigan, USA

Supplementary material

29th April 2025

Transports and pressures

The timeseries shows the basinwide **transport anomaly**...

Meridional transport anomaly

Depth interval: 1000-3000m

Latitude band: 18.75-33.75°N

Transports through the depth interval are averaged across the latitude band.

Calculated using the ECCO state estimate

Transports and pressures

The timeseries shows the basinwide **transport anomaly**...

which can be estimated using **boundary pressures**

Meridional transport **anomaly** Boundary pressure estimate

Depth interval: 1000-3000m

Latitude band: 18.75-33.75°N

Transports through the depth interval are averaged across the latitude band.

Calculated using the ECCO state estimate

Method behind the estimate

We assume **geostrophic balance**:

$$v = \frac{1}{\rho_0 f} \frac{\partial P}{\partial x}$$

and zonally integrate across the basin,

$$\int_{x_W}^{x_E} v \ dx = \frac{1}{\rho_0 f} \left(P_E - P_W \right)$$

We now have an estimate for the **meridional transport** per unit depth

Transports and pressures

The relationship between meridional transport and boundary pressure has been tested with various combinations of:

- Latitude
- Transport definition
- Postprocessing
- Timescale

If a significant component of Atlantic **transport variability** is constrained by **boundary pressures**...

What controls the boundary pressures?

If a significant component of Atlantic **transport variability** is constrained by **boundary pressures**...

How should we observe the Atlantic?

If a significant component of Atlantic **transport variability** is constrained by **boundary pressures**...

How should we observe the Atlantic?

- Extend coverage of the interior at specific latitudes?
- Extend coverage of the **boundaries** at **all latitudes**?

If a significant component of Atlantic **transport variability** is constrained by **boundary pressures**...

What controls the boundary pressures?

• Is it forcing at the boundary?

If a significant component of Atlantic **transport variability** is constrained by **boundary pressures**...

What controls the boundary pressures?

- Is it forcing at the boundary?
- Are **boundary waves** significant?

If a significant component of Atlantic **transport variability** is constrained by **boundary pressures**...

What controls the boundary pressures?

- Is it forcing at the boundary?
- Are **boundary waves** significant?
- Is forcing in the **basin interior** important?

If a significant component of Atlantic **transport variability** is constrained by **boundary pressures**...

What controls the boundary pressures?

- Is it forcing at the boundary?
- Are **boundary waves** significant?
- Is forcing in the **basin interior** important?

We are investigating this using an **adjoint model**

Adjoint models

- Adjoint models effectively run "backwards"
- Relate ocean behaviors to physical causes in the past via automatic differentiation
- Identify the linear sensitivities of an objective function

Objective function for pressure difference

- Select 2 clusters of boundary grid points (e.g. figure)
- Select a time window (e.g. $Jan \Rightarrow Dec 2013$)
- Bottom pressure within each cluster is spatially and then temporally averaged (e.g. $\overline{P}_W, \overline{P}_E$)
- The adjoint model calculates the linear sensitivities of each mean pressure to:

Example clusters in the Atlantic. Both clusters contain boundary grid points with 1000 and 3000 m depth

Results: RAPID Lower

- 18.75-33.75°N
- 1000-3000 m depth
- As featured in presentation

Sensitivity field: Zonal wind stress

Sensitivity of pressure difference surrounding 26.5°N between 1000 and 3000m depth

$$\mathcal{J} = \overline{P}_E - \overline{P}_W$$

The shown sensitivity is **averaged** over all available lags (0-10 yrs)

Sensitivity field: Meridional wind stress

Sensitivity of pressure difference surrounding 26.5°N between 1000 and 3000m depth

$$\mathcal{J}=\overline{P}_E-\overline{P}_W$$

The shown sensitivity is **averaged** over all available lags (0-10 yrs)

Sensitivity field: Heat flux

Sensitivity of pressure difference surrounding 26.5°N between 1000 and 3000m depth

$$\mathcal{J} = \overline{P}_E - \overline{P}_W$$

The shown sensitivity is **averaged** over all available lags (0-10 yrs)

Sensitivity field: Freshwater flux

Sensitivity of pressure difference surrounding 26.5°N between 1000 and 3000m depth

The shown sensitivity is **averaged** over all available lags (0-10 yrs)

Reconstructions

The **sensitivity fields** can be **convoluted** with forcing anomalies (relative to climatology) to **reconstruc**t a transport time series

In this reconstruction we assume the **sensitivity is stationary** (does not depend on absolute time)

Optimal Reconstruction

A reconstruction can be modified to include different **forces** and different amounts of lag (**memory**)

Identifying the optimal combination of forces and memory indicates the **relevant forces** and **timescales**

Optimal reconstruction: Wind and Heat flux 2 Rec. $P_E - P_W$ (OBJ) Eul. 1 Transport [Sv] 0 -12004 2008 2014 2016 2002 2006 2010 2012 2018 Time

The **optimal reconstruction** explains **90%** of the variability and needs a memory of **7-8 years**.

A wind-based reconstruction explains 60-70% of the variability and needs a minimum memory of 3 years.

A heat-based reconstruction explains **50%** of the variability and needs a minimum memory of **7 years**

Heat fluxes are mostly reconstructing the trend

Optimal reconstruction: Freshwater flux only 2 Rec. $P_E - P_W$ (OBJ) Eul. Transport [Sv] 0 -12002 2004 2006 2008 2010 2012 2014 2016 2018 Time

Freshwater fluxes do not contribute to the reconstruction at all.

A longer memory may be required

Results: RAPID Upper

18.75-33.75°N 250-1000 m depth

RAPID Upper

Sensitivity field: Zonal wind stress

-10⁻⁰10⁻⁶

Sv per 0.1 Nm⁻2

 10^{-5}

Sensitivity of pressure difference surrounding 26.5°N between 250 and 1000m depth

The shown sensitivity is **averaged** over all available lags (0-10 yrs)

 -10^{-5}

Sensitivity field: Meridional wind stress

10-5

Sv per 0.1 Nm⁻2

Sensitivity of pressure difference surrounding 26.5°N between 250 and 1000m depth

The shown sensitivity is **averaged** over all available lags (0-10 yrs) 10⁻⁴

RAPID Upper

 -10^{-4}

 -10^{-5}

Sensitivity field: Heat flux

Sensitivity of pressure difference surrounding 26.5°N between 250 and 1000m depth

The shown sensitivity is **averaged** over all available lags (0-10 yrs)

Sensitivity field: Freshwater flux

Sensitivity of pressure difference surrounding 26.5°N between 250 and 1000m depth

$$\mathcal{J} = \overline{P}_E - \overline{P}_W$$

The shown sensitivity is **averaged** over all available lags (0-10 yrs)

Optimal Reconstruction

The **optimal reconstruction** explains **80%** of the variability and needs a memory of **7-8 years.**

40-60% of the variability and needs a minimum memory of 2-3 years or 6

Explained variability of the reconstruction as a function of memory. Dashed lines represent the explained variability once the timeseries has been detrended

Lag [voarc]

years

and requires a minimum memory of 6-

Explained variability of the reconstruction as a function of memory. Dashed lines represent the explained variability once the timeseries has been **detrended**

RAPID Upper

7 years

Freshwater fluxes do not contribute to the reconstruction at all.

A longer memory may be required

 $\mathcal{J} = \overline{P}_E - \overline{P}_W$

Results: S-RAPID Lower

18.75-33.75°S

1200-3000 m depth

Sensitivity field: Zonal wind stress

Sensitivity of pressure difference surrounding 26.5°S between 1200 and 3000m depth

$$\mathcal{J}=\overline{P}_E-\overline{P}_W$$

The shown sensitivity is **averaged** over all available lags (0-10 yrs)

Sensitivity field: Meridional wind stress

Sensitivity of pressure difference surrounding 26.5°S between 1200 and 3000m depth

$$\mathcal{J} = \overline{P}_E - \overline{P}_W$$

The shown sensitivity is **averaged** over all available lags (0-10 yrs)

Sensitivity field: Heat flux

Sensitivity of pressure difference surrounding 26.5°S between 1200 and 3000m depth

$$\mathcal{J} = \overline{P}_E - \overline{P}_W$$

 10^{-6}

The shown sensitivity is **averaged** over all available lags (0-10 yrs)

-10⁻⁶ -10⁻⁰10⁻⁷ S-RAPID Lower Sv per 100 Wm⁻2

Sensitivity field: Freshwater flux

Sensitivity of pressure difference surrounding 26.5°S between 1200 and 3000m depth

$$\mathcal{J} = \overline{P}_E - \overline{P}_W$$

The shown sensitivity is **averaged** over all available lags (0-10 yrs)

Optimal Reconstruction

1.0 Rec. $P_E - P_W$ (OBJ) Eul. Transport [Sv] 0.5 0.0 -0.5-1.02004 2012 2014 2016 2002 2006 2008 2010 2018 Time

Optimal reconstruction: Winds only

The optimal reconstruction is wind-based and explains 90% of the variability. A minimum memory of 1-2 years accomplishes 80% explained variability

Explained variability of the reconstruction as a function of memory. Dashed lines represent the explained variability once the timeseries has been detrended

Explained variability of the reconstruction as a function of memory. Dashed lines represent the explained variability once the timeseries has been **detrended**

1.0 Rec. $P_E - P_W$ (OBJ) Eul. [ransport [Sv] 0.5 0.0 -0.52004 2006 2008 2010 2012 2014 2016 2018 2002 Time

Optimal reconstruction: Freshwater flux only

Freshwater fluxes do not contribute to the reconstruction at all.

A longer memory may be required

S-RAPID Lower

 $\mathcal{J} = \overline{P}_E - \overline{P}_W$

Results: S-RAPID Upper

18.75-33.75°S 250-1200 m depth

Sensitivity field: Zonal wind stress

 10^{-5}

0

Sv per 0.1 Nm⁻2

Sensitivity of pressure difference surrounding 26.5°S between 250 and 1200m depth

$$\mathcal{J} = \overline{P}_E - \overline{P}_W$$

The shown sensitivity is **averaged** over all available lags (0-10 yrs)

S-RAPID Upper

 -10^{-4}

 -10^{-5}

Sensitivity field: Meridional wind stress

Sensitivity of pressure difference surrounding 26.5°S between 250 and 1200m depth

$$\mathcal{J} = \overline{P}_E - \overline{P}_W$$

The shown sensitivity is **averaged** over all available lags (0-10 yrs)

S-RAPID Upper

Sensitivity field: Heat flux

-10⁻⁵ -10⁻⁶ 0 10⁻⁶ 10⁻⁵ Sv per 100 Wm⁻ 2

Sensitivity of pressure difference surrounding 26.5°S between 250 and 1200m depth

$$\mathcal{J} = \overline{P}_E - \overline{P}_W$$

The shown sensitivity is **averaged** over all available lags (0-10 yrs)

S-RAPID Upper

Sensitivity field: Freshwater flux

 -10^{-10}

Sv per 1e-07 m

 10^{-9}

Sensitivity of pressure difference surrounding 26.5°S between 250 and 1200m depth

$$\mathcal{J} = \overline{P}_E - \overline{P}_W$$

The shown sensitivity is **averaged** over all available lags (0-10 yrs)

S-RAPID Upper

 -10^{-9}

S-RAPID Upper

Optimal reconstruction: Wind and Heat flux

The **optimal reconstruction** explains **85%** of the variability with an optimal memory of **10 years** (max. available value).

A minimum memory of **4 years** explains **75%** of the variability

S-RAPID Upper

Rec. $P_E - P_W$ (OBJ) 1.0 Eul. Transport [Sv] 0.5 0.0 -0.5 -1.02004 2006 2010 2014 2002 2008 2012 2016 2018 Time

Optimal reconstruction: Winds only

A **wind-based** reconstruction explains 75% of the variability. With as minimum memory of **3-4 years**

A heat-based reconstruction can explain 20% of the variability and requires a memory of 10 years (max available value)

Freshwater fluxes do not contribute to the reconstruction at all.

A longer memory may be required

S-RAPID Upper

Summary

- There is a robust relationship between transport variability and boundary pressures
- Wind forcing drives year-to-year variability of transport on a 3-year timescale
- In the Northern Hemisphere, heat fluxes drive a trend in the transport on a 7-year timescale
- In the **Southern Hemisphere**, the transport variability is almost entirely **wind-driven**

