Evidence of xylem hydraulic sectoring in apple trees from a deuterium tracing experiment in a split-root system

N. Giuliani¹, A.-L. Haug¹, S. Brighenti^{1,2,3}, A. Aguzzoni³, D. Zanotelli¹,

D. Penna⁴, M. Tagliavini¹

¹Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Italy ²Competence Centre for Mountain Innovation Ecosystems, Free University of Bozen-Bolzano, Italy ³Eco Research, Bolzano, Italy

aaritech

⁴Department of Agriculture, Food, Environment and Forestry, University of Florence, Italy

1. Evaluate xylem sectoriality in apple trees

unibz

Kelvinsong CC BY-SA 3.0

(adapted)

via Wikimedia Commons

1. Evaluate xylem sectoriality in apple trees

unibz

Kelvinsong CC BY-SA 3.0

(adapted)

1. Evaluate xylem sectoriality in apple trees

unibz

Kelvinsong CC BY-SA 3.0

(adapted)

1. Evaluate xylem sectoriality in apple trees

Kelvinsong CC BY-SA 3.0

(adapted)

1. Evaluate xylem sectoriality in apple trees

2. Verify if sectoriality is affected by water availability at root level

unibz

Methodology

Experimental design

Methodology

Experimental design

Split-root system

unibz

Methodology

Labelled irrigation (²H) \longrightarrow Sampling \longrightarrow Extraction (CVD) \longrightarrow Analysis (IRMS)

unibz

Results: average F_{sw} in different sampling positions

unibz

• F_{SW} in soil coincides with percentage of

sectors receiving labelled water

unibz

• F_{SW} in soil coincides with percentage of

sectors receiving labelled water

when all soil is wet, F_{SW} in the tree is

similar to that in the soil

- F_{SW} in soil coincides with percentage of sectors receiving labelled water
- when all soil is **wet**, F_{sw} in the tree is

similar to that in the soil

 when part of the soil is dry, F_{SW} in the tree is larger than in the soil

- F_{SW} in soil coincides with percentage of sectors receiving labelled water
- when all soil is wet, F_{SW} in the tree is

similar to that in the soil

- when part of the soil is dry, $F_{\rm SW}$ in the tree is larger than in the soil
 - → most of the water uptake occurs from the wet side

F_{sw} in rootstock (5 cm height)

frame = individual tree; radius of circle = F_{SW} ; color = irrigation water

unibz

F_{sw} in rootstock (5 cm height)

homogeneous values in 100

frame = individual tree; radius of circle = F_{SW} ; color = irrigation water

unibz

F_{sw} in rootstock (5 cm height)

- homogeneous values in 100
- high F_{SW} only in sectors that received labelled water in

50_W and **25_W**

frame = individual tree; radius of circle = F_{SW} ; color = irrigation water

unibz

F_{sw} in rootstock (5 cm height)

- homogeneous values in 100
- high F_{SW} only in sectors that received labelled water in

50_W and **25_W**

• enrichment also in non-labelled

sectors in **50_D** and **25_D**

frame = individual tree; radius of circle = F_{SW} ; color = irrigation water

F_{sw} in shoots (90 cm height)

frame = individual tree; radius of circle = F_{SW} ; color = irrigation water

unibz Fac

F_{sw} in shoots (90 cm height)

strong heterogeneity between \rightarrow

sectors within each tree

mixing of water is limited \rightarrow

frame = individual tree; radius of circle = F_{SW} ; color = irrigation water

unibz

F_{sw} in shoots (90 cm height)

→ strong heterogeneity between

sectors within each tree

→ mixing of water is limited

frame = individual tree; radius of circle = F_{SW} ; color = irrigation water

F_{sw} in shoots (90 cm height)

→ strong heterogeneity between

sectors within each tree

→ mixing of water is limited

→ mixing enhanced when other
sectors are dry

frame = individual tree; radius of circle = F_{SW} ; color = irrigation water

Conclusions

- Apple tree xylem exhibits sectored behaviour if soil is homogeneously wet
- Lateral movement is enhanced if part of the soil is dry
 - strong water potential gradients can overcome resistance to lateral flux
- Water and nutrient distibution in the canopy may be heterogenous

Conclusions

- Apple tree xylem exhibits sectored behaviour if soil is homogeneously wet
- Lateral movement is enhanced if part of the soil is dry
 - strong water potential gradients can overcome resistance to lateral flux
- Water and nutrient distibution in the canopy may be heterogenous
- Implications for ecohydrology
 - → in <u>sectored</u> trees that access different water sources, composition of plant water could be spatially variable within the tree
 - → collecting multiple samples per tree could be advisable

Thank you!

Scan the QR code for additional material and to discuss further!

unibz

Why was F_{sw} in shoots higher in non-labelled than in labelled sectors?

unibz

Why was F_{sw} in shoots higher in non-labelled than in labelled sectors?

• difficulty in exactly identifying sectors along the trunk

Why was F_{sw} in shoots higher in non-labelled than in labelled sectors?

- difficulty in exactly identifying sectors along the trunk
- inaccuracy during sampling

Why was F_{sw} in shoots higher in non-labelled than in labelled sectors?

- difficulty in exactly identifying sectors along the trunk
- inaccuracy during sampling
- twisting of xylem vessels around the trunk

Why was F_{sw} in shoots higher in non-labelled than in labelled sectors?

- difficulty in exactly identifying sectors along the trunk
- inaccuracy during sampling
- twisting of xylem vessels around the trunk

Can we better visualize the flow of water in the tree?

• planned experiment with dye as tracer

McElrone et al. (2021) Functional hydraulic sectoring in grapevines as evidenced by sap flow, dye infusion, leaf removal and micro-computed tomography, *AoB PLANTS*, 13 (2), 2021. <u>https://doi.org/10.1093/aobpla/plab003</u>

unibz

