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INTRODUCTION

4A 4B 4C

the F

SI with the following objectives:

1A: Floods are the costliest natural hazard in Canada in
terms of direct infrastructure damage. The Canadian flood
susceptibility index (FSI) was developed in 2022 with an
overall accuracy of 0.89. This research focused on updating

- Inclusion of annual seasonal features and
additional geospatial features

- Perform three feature selection methods to

determine useful inputs: partial correlation, partial
mutual information and combined neural pathway
strength

- Compare and optimize the model performance
of three models for prediction of flood susceptible
areas: random forest, artificial neural network and
convoluted neural network
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METHODOLOGY
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residual between the 2 models.

3A-D: Feature Selection (FS)

Features are ranked from highest importance to least.
Natural breaks (Fisher-Jenks natural breaks algorithm) are in
dashed red lines, creating groups of features that have similar
levels of importance. Features within the curly brackets are
features chosen for each group for modelling.

3A: Partial Correlation (PC) ranks features by fitting a linear
regression model to predict the target using feature A and
then again using all other features. The PC value is the
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4A-D: Flood Probability Prediction Model Comparison

Performance results of the flood probability models are shown in terms of ROC curves in 4A-4C. F1, Accuracy and Running Time
are shown in 4D. The performance for the four subsets of input features are compared for each model algorithm, with the highest
performing model emphasized by a star. RF performed the best followed by CNN and ANN. For all algorithms, inclusion of all 29

features resulted in the highest AUC.
4D

4A: All input feature subsets
performed well with RF resulting in
AUC of over 0.98 for all subsets.

4B: ANN models had the lowest
performance with AUC ranging from
0.889 to 0.918.

4C: CNN models resulted in AUC
ranging from 0.956 to 0.969

4D: Across all metrics, RF performed
the best, while ANN took the longest
to develop and performed the worst.

CONCLUSIONS & FUTURE WORK

Inclusion of all features led to the best performance for all 3 model algorithms, which is not surprising since there is a small
number of features (29) to begin with, compared to the total sample size. Seasonal climate variables are not often included in
FSM, but prove to be useful in model learning. With the preliminary CNN model development and high performance of 1 model,
CNN shows great potential. Future work include the continued development of the models and testing on a Canada-wide dataset.
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