Effects of environmental variables on intra-annual dynamics of radial growth of green alder (*Alnus alnobetula*) along an elevational transect

Walter Oberhuber, Andreas Gruber, Gerhard Wieser; Department of Botany, University of Innsbruck, 6020 Innsbruck, Austria

Background

Green alder (*Alnus alnobetula*) is a pioneer species that is widely distributed at the alpine treeline. Studies on intra-annual radial growth (RG) of tall multi-stemmed shrubs are scarce, and still completely lacking for *A. alnobetula*. Knowledge of RG phenology and drivers of intra-annual RG is needed to better predict the potential spread of this invasive shrub across the alpine treeline ecotone as a result of climate warming.

Results

We found a marked delay between bud burst and the onset of RG of *c*. 4 weeks within the treeline ecotone. RG started and ceased around end of June (doy 177±7) and end of August (233±9), respectively (**Fig. 1 a-b**). Growth duration was found to be 56±9 days. The time of maximum RG was observed in early July (**Fig. 1 c-d**, **Table 1**), with about 60 % of the annual increment developing during this month (**Fig. 2**). Although RG in the valley already started in mid-May (doy 134±2) and lasted until mid-October (doy 286±8; duration: 153±7 days), time of maximum RG in 2024 was reached at a similar point in time as within the treeline ecotone (**Table 1**). The environmental factor most closely related to intra-annual RG along the entire elevational transect was soil temperature (**Table 2**).

Aims and Method

The focus of this study was (*i*) to determine key dates of intra-annual RG, and (*ii*) to assess environmental factors most closely related to daily RG along an elevational transect. RG was continuously recorded by dendrometers (n=21) at three study plots within the alpine treeline ecotone (1940–2150 m asl; Mt. Patscherkofel, Central Alps), and in potted saplings at 600 m asl (Botanical garden in Innsbruck, Tyrol, Austria).

Table 1. Phenological dates of intra-annual radial stem growth. Dates are given in day of the year.					Table 2. Spearman correlation coefficients (ρ) between environmental variables (daily means) and daily radial incrementation						
Plot	Onset	End	IP	Dur (days)		Tair	Tsoil	Tcamb	RH	VPD	SW
FL	180	237	196	57		(°C)	(°C)	(°C)	(70)	(KI a)	(70
TR-N	185	241	202	56	FL	0.110	0.419***	0.185	0.125	-0.123	-0.1
	100	2.11	202	60	TR-N	0.234*	0.370***	0.288*	0.097	0.090	0.02
TR-S	182	244	201	62	TR-S	0.334**	0.412***	0.297*	-0.013	0.081	-0.18
V	133	278	191	145	Valley	0.274*	0.371**	NA	-0.113	0.171	-0.1

 $\label{eq:FL=forestline, TR-N=treeline North, TR-S=treeline South, V=valley site, IP=inflection point, Dur=duration, T_{air}=air temperature, T_{sout}=souther the souther temperature, T_{aint}=air temperature, T_{air}=air temperatu$

Conclusions

- > A. alnobetula shows a high degree of plasticity in RG, with the RG period spanning two and five months within the treeline ecotone and in the valley, respectively.
- The striking delay in RG onset with respect to bud burst indicates that carbon reserves are initially allocated toward leaf formation.
- Although our findings underline the importance of temperature constraints on intraannual RG, high temperatures do not adequately translate into cambial activity indicating that a non-linear relationship between temperature and RG exists.

Acknowledgements: The study was supported by the Austrian Science Fund FWF (P34706-B). References: Oberhuber et al. Forests (2022), doi: 10.3390/f13030440; Oberhuber et al. Plants (2023), doi: 10.3390/plants12081708

Valley site (Botanical Garden, Innsbruck, Austria) (600 m asl)

Point dendrometer mounted on the stem of *Alnus alnobetula* (ZN12-O-WP, Natkon.ch, Switzerland)

For more details please download the following papers (open access)

