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• Transient hydraulic tomography (THT) is the process of obtaining subsurface information 

from different perceptions.

• Multiple studies advocated SSLE and SimSLE geostatistical methods as best compared to 

other techniques in mapping the spatial distribution of aquifer parameters.

• However, the basic assumption of geostatistical methods is that the aquifer parameters 

follow second-order stationary stochastic Gaussian distributions.

• Fractured aquifers were found to have complex heterogeneity under multiple scales, and 

it is expected that the aquifer parameters do not follow Gaussian distribution.

• Hence, there is a need to test another method for THT inversion of fractured aquifers, 

which can effectively map the non-Gaussian distribution of aquifer parameters in 

fractured aquifers.

• The Gaussian mixture model is generally used to represent the complex unknown 

distribution as a linear combination of multiple Gaussian distributions.

2. Objectives

• To develop a Gaussian mixture inversion algorithm to effectively map the spatial 

distribution of aquifer parameters in fractured geologic settings.

• To examine the role of a number of Gaussian components on the performance of the 

Gaussian mixture inversion algorithm.

• To examine the influence of the selection of sampling strategy on GMM inversion of 

THT data.

• To study the role of pumping data quantity on the performance of GMM inversion. 

Transient Hydraulic 

Tomography experiments

• 13 cross hole pumping 

experiments at a constant pumping 

rate of 35.71 ml/s were conducted 

and the hydraulic head responses 

were monitored at monitoring 

locations.

• 10 cross hole pumping data were 

used in the inversion process, and 

three were used for validation.

Gaussian Mixture Model (GMM)

Non-linear objective function

Role of the number of Gaussian components* Role of the parameter sampling strategy** Role of high information pumping data***

• The Gaussian mixture model (GMM) is successfully extended to transient hydraulic tomography on fractured 

geologic settings.

• The proposed sequential Gaussian mixture inversion algorithm effectively captured fracture patterns and their 

connectivity on the laboratory rock block.

• The performance of the sequential Gaussian mixture inversion algorithm is sensitive to the number of Gaussian 

components, and the parameter initialization strategy.

Figure 1: Experimental set up of fractured granite rock block

Figure 2 : GMM flow 

chart 
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