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as flow driving force

← Wenck (2023), ↑ Jackson & Krevor (2020)
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↖ Wolff et al. (2013), ← Wenck et al. (2025)

discretized using a coarse-scale mesh (Figure 1). All effec-
tive quantities are now calculated for each coarse grid
block using the available fine-scale information (submodel
scale). Thus, the porous medium can also be heterogeneous
on the coarse scale. The choice of the single method is at
first motivated by efficiency. The solution of the global
flow problem by the multiscale method including upscaling
(or downscaling) steps should be computationally much
cheaper than the direct solution on the fine scale. Second,
the efficient parameters should be able to account for
important fine-scale flow features.

3.1. Effective Porosity
[19] Porosity is defined as the volume fraction of pore

space. Thus, an effective coarse-scale porosity can easily
be calculated as a volume average of the fine-scale
porosity:
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3.2. Effective Capillary Pressure
[20] We base the calculation of effective capillary pres-

sure functions on the assumption of local capillary equilib-
rium. This is a common assumption for determining static
capillary pressure curves for fine-scale models, either
experimentally or by upscaling pore-scale models. It allows
us to use a macroscopic percolation approach such as that
suggested and investigated in Kueper and McWorter
[1992] or Yortsos et al. [1993]. The macroscopic percola-
tion theory is similar to the percolation theory used in pore
network modeling. However, instead of different pores
and/or pore throats the points of the percolation lattice are
assigned to blocks of a heterogeneous porous medium,
which have a certain porosity, permeability, and capillary
pressure function. The key idea of a percolation method is
to check if and how a physical process can propagate from
one grid point to a neighboring point. The origin of as well
as the criteria for the propagation depend on the process
and on the kind of problem that is to be modeled. By defini-
tion, a pressure is a scalar quantity. Thus, the effective cap-
illary pressure must not depend on direction. To ensure
this, we allow the complete surroundings of a coarse grid
block to be the origin of a propagation, instead of choosing,
for example, one boundary side as the inlet and another as
the outlet. In comparison to other methods which are based
on a capillary equilibrium, such as the method described in
Virnovsky et al. [2004], the percolation approach allows to
distinguish active and inactive regions which have no con-
nection to the domain boundaries. This can have an influ-
ence on the effective capillary pressure but also on other
effective quantities like relative permeabilities (see section
3.4).

[21] Two processes are distinguished: drainage and
imbibition. Figure 2 schematically shows one coarse grid
block. Depending on the process the grid block is either
fully saturated by wetting fluid and surrounded by nonwet-
ting fluid (drainage) or saturated by nonwetting fluid and
surrounded by wetting fluid (imbibition). The macroscopic
percolation algorithm for both drainage and imbibition
works as follows:

[22] 1. Determine the initial uniform pressure boundary
condition (pbc ) from the capillary-pressure-saturation func-
tions of the fine-scale cells along the boundary of a coarse
grid block.

[23] 2. Check whether a boundary cell is invaded at
the given boundary pressure (see sections 3.2.1 and
3.2.2).

[24] 3. If a boundary cell is invaded, check whether their
neighboring cells are invaded (e.g., hatched cell at the
lower boundary in Figure 2).

[25] 4. For all neighboring cells which are invaded,
check whether their neighboring cells are invaded (e.g.,
hatched cell in the upper part of Figure 2).

[26] 5. Repeat step 4 until no more neighboring cells can
be invaded.

[27] 6. Continue with step 2 until all boundary cells have
been checked.

[28] 7. Calculate and store the averaged coarse-scale sat-
uration S!w and the effective coarse-scale capillary pressure
p!c.

[29] 8. Increase/decrease the boundary pressure pbc and
restart at step 2 until a sufficient number of data points for
the p!cðS!wÞ function is available.

[30] Once the percolation paths (shaded cells in Figure
2) are determined (step 6), the saturation distribution
is defined by the inverse capillary-pressure-saturation
function

Sei5p21
ci ðpbc Þ; Swi5S21

e ðSeiÞ (15)

where the definition of the effective saturation Se may dif-
fer in dependence on the capillary-pressure-saturation
model. All cells that are not invaded are still fully saturated
with the displaced fluid. The effective coarse-scale parame-
ters can now be calculated as a volume average of the fine-
scale distribution as:
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Figure 2. Schematic of percolation for capillary pressure
upscaling.
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discretized using a coarse-scale mesh (Figure 1). All effec-
tive quantities are now calculated for each coarse grid
block using the available fine-scale information (submodel
scale). Thus, the porous medium can also be heterogeneous
on the coarse scale. The choice of the single method is at
first motivated by efficiency. The solution of the global
flow problem by the multiscale method including upscaling
(or downscaling) steps should be computationally much
cheaper than the direct solution on the fine scale. Second,
the efficient parameters should be able to account for
important fine-scale flow features.

3.1. Effective Porosity
[19] Porosity is defined as the volume fraction of pore

space. Thus, an effective coarse-scale porosity can easily
be calculated as a volume average of the fine-scale
porosity:
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3.2. Effective Capillary Pressure
[20] We base the calculation of effective capillary pres-

sure functions on the assumption of local capillary equilib-
rium. This is a common assumption for determining static
capillary pressure curves for fine-scale models, either
experimentally or by upscaling pore-scale models. It allows
us to use a macroscopic percolation approach such as that
suggested and investigated in Kueper and McWorter
[1992] or Yortsos et al. [1993]. The macroscopic percola-
tion theory is similar to the percolation theory used in pore
network modeling. However, instead of different pores
and/or pore throats the points of the percolation lattice are
assigned to blocks of a heterogeneous porous medium,
which have a certain porosity, permeability, and capillary
pressure function. The key idea of a percolation method is
to check if and how a physical process can propagate from
one grid point to a neighboring point. The origin of as well
as the criteria for the propagation depend on the process
and on the kind of problem that is to be modeled. By defini-
tion, a pressure is a scalar quantity. Thus, the effective cap-
illary pressure must not depend on direction. To ensure
this, we allow the complete surroundings of a coarse grid
block to be the origin of a propagation, instead of choosing,
for example, one boundary side as the inlet and another as
the outlet. In comparison to other methods which are based
on a capillary equilibrium, such as the method described in
Virnovsky et al. [2004], the percolation approach allows to
distinguish active and inactive regions which have no con-
nection to the domain boundaries. This can have an influ-
ence on the effective capillary pressure but also on other
effective quantities like relative permeabilities (see section
3.4).

[21] Two processes are distinguished: drainage and
imbibition. Figure 2 schematically shows one coarse grid
block. Depending on the process the grid block is either
fully saturated by wetting fluid and surrounded by nonwet-
ting fluid (drainage) or saturated by nonwetting fluid and
surrounded by wetting fluid (imbibition). The macroscopic
percolation algorithm for both drainage and imbibition
works as follows:

[22] 1. Determine the initial uniform pressure boundary
condition (pbc ) from the capillary-pressure-saturation func-
tions of the fine-scale cells along the boundary of a coarse
grid block.

[23] 2. Check whether a boundary cell is invaded at
the given boundary pressure (see sections 3.2.1 and
3.2.2).

[24] 3. If a boundary cell is invaded, check whether their
neighboring cells are invaded (e.g., hatched cell at the
lower boundary in Figure 2).

[25] 4. For all neighboring cells which are invaded,
check whether their neighboring cells are invaded (e.g.,
hatched cell in the upper part of Figure 2).

[26] 5. Repeat step 4 until no more neighboring cells can
be invaded.

[27] 6. Continue with step 2 until all boundary cells have
been checked.

[28] 7. Calculate and store the averaged coarse-scale sat-
uration S!w and the effective coarse-scale capillary pressure
p!c.

[29] 8. Increase/decrease the boundary pressure pbc and
restart at step 2 until a sufficient number of data points for
the p!cðS!wÞ function is available.

[30] Once the percolation paths (shaded cells in Figure
2) are determined (step 6), the saturation distribution
is defined by the inverse capillary-pressure-saturation
function

Sei5p21
ci ðpbc Þ; Swi5S21

e ðSeiÞ (15)

where the definition of the effective saturation Se may dif-
fer in dependence on the capillary-pressure-saturation
model. All cells that are not invaded are still fully saturated
with the displaced fluid. The effective coarse-scale parame-
ters can now be calculated as a volume average of the fine-
scale distribution as:
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Figure 2. Schematic of percolation for capillary pressure
upscaling.
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discretized using a coarse-scale mesh (Figure 1). All effec-
tive quantities are now calculated for each coarse grid
block using the available fine-scale information (submodel
scale). Thus, the porous medium can also be heterogeneous
on the coarse scale. The choice of the single method is at
first motivated by efficiency. The solution of the global
flow problem by the multiscale method including upscaling
(or downscaling) steps should be computationally much
cheaper than the direct solution on the fine scale. Second,
the efficient parameters should be able to account for
important fine-scale flow features.

3.1. Effective Porosity
[19] Porosity is defined as the volume fraction of pore

space. Thus, an effective coarse-scale porosity can easily
be calculated as a volume average of the fine-scale
porosity:
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3.2. Effective Capillary Pressure
[20] We base the calculation of effective capillary pres-

sure functions on the assumption of local capillary equilib-
rium. This is a common assumption for determining static
capillary pressure curves for fine-scale models, either
experimentally or by upscaling pore-scale models. It allows
us to use a macroscopic percolation approach such as that
suggested and investigated in Kueper and McWorter
[1992] or Yortsos et al. [1993]. The macroscopic percola-
tion theory is similar to the percolation theory used in pore
network modeling. However, instead of different pores
and/or pore throats the points of the percolation lattice are
assigned to blocks of a heterogeneous porous medium,
which have a certain porosity, permeability, and capillary
pressure function. The key idea of a percolation method is
to check if and how a physical process can propagate from
one grid point to a neighboring point. The origin of as well
as the criteria for the propagation depend on the process
and on the kind of problem that is to be modeled. By defini-
tion, a pressure is a scalar quantity. Thus, the effective cap-
illary pressure must not depend on direction. To ensure
this, we allow the complete surroundings of a coarse grid
block to be the origin of a propagation, instead of choosing,
for example, one boundary side as the inlet and another as
the outlet. In comparison to other methods which are based
on a capillary equilibrium, such as the method described in
Virnovsky et al. [2004], the percolation approach allows to
distinguish active and inactive regions which have no con-
nection to the domain boundaries. This can have an influ-
ence on the effective capillary pressure but also on other
effective quantities like relative permeabilities (see section
3.4).

[21] Two processes are distinguished: drainage and
imbibition. Figure 2 schematically shows one coarse grid
block. Depending on the process the grid block is either
fully saturated by wetting fluid and surrounded by nonwet-
ting fluid (drainage) or saturated by nonwetting fluid and
surrounded by wetting fluid (imbibition). The macroscopic
percolation algorithm for both drainage and imbibition
works as follows:

[22] 1. Determine the initial uniform pressure boundary
condition (pbc ) from the capillary-pressure-saturation func-
tions of the fine-scale cells along the boundary of a coarse
grid block.

[23] 2. Check whether a boundary cell is invaded at
the given boundary pressure (see sections 3.2.1 and
3.2.2).

[24] 3. If a boundary cell is invaded, check whether their
neighboring cells are invaded (e.g., hatched cell at the
lower boundary in Figure 2).

[25] 4. For all neighboring cells which are invaded,
check whether their neighboring cells are invaded (e.g.,
hatched cell in the upper part of Figure 2).

[26] 5. Repeat step 4 until no more neighboring cells can
be invaded.

[27] 6. Continue with step 2 until all boundary cells have
been checked.

[28] 7. Calculate and store the averaged coarse-scale sat-
uration S!w and the effective coarse-scale capillary pressure
p!c.

[29] 8. Increase/decrease the boundary pressure pbc and
restart at step 2 until a sufficient number of data points for
the p!cðS!wÞ function is available.

[30] Once the percolation paths (shaded cells in Figure
2) are determined (step 6), the saturation distribution
is defined by the inverse capillary-pressure-saturation
function

Sei5p21
ci ðpbc Þ; Swi5S21

e ðSeiÞ (15)

where the definition of the effective saturation Se may dif-
fer in dependence on the capillary-pressure-saturation
model. All cells that are not invaded are still fully saturated
with the displaced fluid. The effective coarse-scale parame-
ters can now be calculated as a volume average of the fine-
scale distribution as:
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Figure 2. Schematic of percolation for capillary pressure
upscaling.
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discretized using a coarse-scale mesh (Figure 1). All effec-
tive quantities are now calculated for each coarse grid
block using the available fine-scale information (submodel
scale). Thus, the porous medium can also be heterogeneous
on the coarse scale. The choice of the single method is at
first motivated by efficiency. The solution of the global
flow problem by the multiscale method including upscaling
(or downscaling) steps should be computationally much
cheaper than the direct solution on the fine scale. Second,
the efficient parameters should be able to account for
important fine-scale flow features.

3.1. Effective Porosity
[19] Porosity is defined as the volume fraction of pore

space. Thus, an effective coarse-scale porosity can easily
be calculated as a volume average of the fine-scale
porosity:
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3.2. Effective Capillary Pressure
[20] We base the calculation of effective capillary pres-

sure functions on the assumption of local capillary equilib-
rium. This is a common assumption for determining static
capillary pressure curves for fine-scale models, either
experimentally or by upscaling pore-scale models. It allows
us to use a macroscopic percolation approach such as that
suggested and investigated in Kueper and McWorter
[1992] or Yortsos et al. [1993]. The macroscopic percola-
tion theory is similar to the percolation theory used in pore
network modeling. However, instead of different pores
and/or pore throats the points of the percolation lattice are
assigned to blocks of a heterogeneous porous medium,
which have a certain porosity, permeability, and capillary
pressure function. The key idea of a percolation method is
to check if and how a physical process can propagate from
one grid point to a neighboring point. The origin of as well
as the criteria for the propagation depend on the process
and on the kind of problem that is to be modeled. By defini-
tion, a pressure is a scalar quantity. Thus, the effective cap-
illary pressure must not depend on direction. To ensure
this, we allow the complete surroundings of a coarse grid
block to be the origin of a propagation, instead of choosing,
for example, one boundary side as the inlet and another as
the outlet. In comparison to other methods which are based
on a capillary equilibrium, such as the method described in
Virnovsky et al. [2004], the percolation approach allows to
distinguish active and inactive regions which have no con-
nection to the domain boundaries. This can have an influ-
ence on the effective capillary pressure but also on other
effective quantities like relative permeabilities (see section
3.4).

[21] Two processes are distinguished: drainage and
imbibition. Figure 2 schematically shows one coarse grid
block. Depending on the process the grid block is either
fully saturated by wetting fluid and surrounded by nonwet-
ting fluid (drainage) or saturated by nonwetting fluid and
surrounded by wetting fluid (imbibition). The macroscopic
percolation algorithm for both drainage and imbibition
works as follows:

[22] 1. Determine the initial uniform pressure boundary
condition (pbc ) from the capillary-pressure-saturation func-
tions of the fine-scale cells along the boundary of a coarse
grid block.

[23] 2. Check whether a boundary cell is invaded at
the given boundary pressure (see sections 3.2.1 and
3.2.2).

[24] 3. If a boundary cell is invaded, check whether their
neighboring cells are invaded (e.g., hatched cell at the
lower boundary in Figure 2).

[25] 4. For all neighboring cells which are invaded,
check whether their neighboring cells are invaded (e.g.,
hatched cell in the upper part of Figure 2).

[26] 5. Repeat step 4 until no more neighboring cells can
be invaded.

[27] 6. Continue with step 2 until all boundary cells have
been checked.

[28] 7. Calculate and store the averaged coarse-scale sat-
uration S!w and the effective coarse-scale capillary pressure
p!c.

[29] 8. Increase/decrease the boundary pressure pbc and
restart at step 2 until a sufficient number of data points for
the p!cðS!wÞ function is available.

[30] Once the percolation paths (shaded cells in Figure
2) are determined (step 6), the saturation distribution
is defined by the inverse capillary-pressure-saturation
function

Sei5p21
ci ðpbc Þ; Swi5S21

e ðSeiÞ (15)

where the definition of the effective saturation Se may dif-
fer in dependence on the capillary-pressure-saturation
model. All cells that are not invaded are still fully saturated
with the displaced fluid. The effective coarse-scale parame-
ters can now be calculated as a volume average of the fine-
scale distribution as:
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Figure 2. Schematic of percolation for capillary pressure
upscaling.
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discretized using a coarse-scale mesh (Figure 1). All effec-
tive quantities are now calculated for each coarse grid
block using the available fine-scale information (submodel
scale). Thus, the porous medium can also be heterogeneous
on the coarse scale. The choice of the single method is at
first motivated by efficiency. The solution of the global
flow problem by the multiscale method including upscaling
(or downscaling) steps should be computationally much
cheaper than the direct solution on the fine scale. Second,
the efficient parameters should be able to account for
important fine-scale flow features.

3.1. Effective Porosity
[19] Porosity is defined as the volume fraction of pore

space. Thus, an effective coarse-scale porosity can easily
be calculated as a volume average of the fine-scale
porosity:
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3.2. Effective Capillary Pressure
[20] We base the calculation of effective capillary pres-

sure functions on the assumption of local capillary equilib-
rium. This is a common assumption for determining static
capillary pressure curves for fine-scale models, either
experimentally or by upscaling pore-scale models. It allows
us to use a macroscopic percolation approach such as that
suggested and investigated in Kueper and McWorter
[1992] or Yortsos et al. [1993]. The macroscopic percola-
tion theory is similar to the percolation theory used in pore
network modeling. However, instead of different pores
and/or pore throats the points of the percolation lattice are
assigned to blocks of a heterogeneous porous medium,
which have a certain porosity, permeability, and capillary
pressure function. The key idea of a percolation method is
to check if and how a physical process can propagate from
one grid point to a neighboring point. The origin of as well
as the criteria for the propagation depend on the process
and on the kind of problem that is to be modeled. By defini-
tion, a pressure is a scalar quantity. Thus, the effective cap-
illary pressure must not depend on direction. To ensure
this, we allow the complete surroundings of a coarse grid
block to be the origin of a propagation, instead of choosing,
for example, one boundary side as the inlet and another as
the outlet. In comparison to other methods which are based
on a capillary equilibrium, such as the method described in
Virnovsky et al. [2004], the percolation approach allows to
distinguish active and inactive regions which have no con-
nection to the domain boundaries. This can have an influ-
ence on the effective capillary pressure but also on other
effective quantities like relative permeabilities (see section
3.4).

[21] Two processes are distinguished: drainage and
imbibition. Figure 2 schematically shows one coarse grid
block. Depending on the process the grid block is either
fully saturated by wetting fluid and surrounded by nonwet-
ting fluid (drainage) or saturated by nonwetting fluid and
surrounded by wetting fluid (imbibition). The macroscopic
percolation algorithm for both drainage and imbibition
works as follows:

[22] 1. Determine the initial uniform pressure boundary
condition (pbc ) from the capillary-pressure-saturation func-
tions of the fine-scale cells along the boundary of a coarse
grid block.

[23] 2. Check whether a boundary cell is invaded at
the given boundary pressure (see sections 3.2.1 and
3.2.2).

[24] 3. If a boundary cell is invaded, check whether their
neighboring cells are invaded (e.g., hatched cell at the
lower boundary in Figure 2).

[25] 4. For all neighboring cells which are invaded,
check whether their neighboring cells are invaded (e.g.,
hatched cell in the upper part of Figure 2).

[26] 5. Repeat step 4 until no more neighboring cells can
be invaded.

[27] 6. Continue with step 2 until all boundary cells have
been checked.

[28] 7. Calculate and store the averaged coarse-scale sat-
uration S!w and the effective coarse-scale capillary pressure
p!c.

[29] 8. Increase/decrease the boundary pressure pbc and
restart at step 2 until a sufficient number of data points for
the p!cðS!wÞ function is available.

[30] Once the percolation paths (shaded cells in Figure
2) are determined (step 6), the saturation distribution
is defined by the inverse capillary-pressure-saturation
function

Sei5p21
ci ðpbc Þ; Swi5S21

e ðSeiÞ (15)

where the definition of the effective saturation Se may dif-
fer in dependence on the capillary-pressure-saturation
model. All cells that are not invaded are still fully saturated
with the displaced fluid. The effective coarse-scale parame-
ters can now be calculated as a volume average of the fine-
scale distribution as:
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Figure 2. Schematic of percolation for capillary pressure
upscaling.
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MATLAB package for MIP upscaling

params = Params(krw,krg,cap_pressure,rho_gas,rho_water);

options = Options().save_mip_step(true); % new release v0.12.0
options.hydrostatic_correction = false;
                               % ↓ EGRID improted with MRST
strata_trapped = strata_trapper(grid, sub_rock, params, ""...
    options=options, mask=mask, parfor_arg = 36 );

plot_result(strata_trapped);

ogs_export(strata_trapped); % PFLOTRAN-OGS input deck

github.com/Imperial College London/



Imperial College London

Endurance CO2 storage (ref.: Northern Endurance Partnership)
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Upscaled flow functions

3×3×3 
upscaling

plot_result(strata_trapped)
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more at: Wenck et al. (2025), Elizarev et al. (2024), StrataTrapper-models on GitHub

MIP-based vs conventional upscaling

injection: 25 years,
monitoring: 25 years, 
4 wells

3×3×3 
upscaling
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Endurance CO2 storage (ref.: Northern Endurance Partnership)
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Downscaled gas saturation

final timestep, top-down view

← ←
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Downscaled gas saturation 8 years of injection, side view
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Comparative sensitivity analysis: CO2 boundary proximity

Base value Range Units Name
𝑄!"# 250 [3, 1000] kt	CO$

year
Well injection rate

⁄1 𝜆 1/1.75 [0.3, 1] 1 Leverett J-
function shape

𝑐% 4 [2, 8] m z correlation 
length

𝑐& 760 [80, 1000] m y correlation 
length

𝐽'!"
𝐽'!",)*+

0.032
0.032

[0.01, 1.2] 1 Leverett J-
function minimum

⁄𝑐, 𝑐& 1000
760

[1, 2] 1 x-to-y corr. len. 
ratio
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