
Nozue and Fukahata ﻿
Earth, Planets and Space           (2025) 77:12  
https://doi.org/10.1186/s40623-024-02115-3

FULL PAPER Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Earth, Planets and Space
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a strain‑rate field by introducing sparse 
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Abstract 

Many studies have estimated crustal deformation from observed geodetic data. So far, because most studies have 
applied a smoothness constraint, which includes the assumption of local uniformity of a strain-rate field, localized 
strain rates near fault zones have tended to be underestimated when we invert spatially sporadic GNSS data. To over-
come this difficulty, we introduce sparse modeling into the estimation of a strain-rate field. Specifically, we impose 
a sparsity constraint as well as the smoothness constraint on strain rates as prior information, which are expressed 
by the L1-norm and the L2-norm of the second-order derivative of the velocity field, respectively. To investigate 
the validity and limitation of the proposed method, we conduct synthetic tests, in which we consider an anti-plane 
strain problem due to a steady slip on a buried strike-slip fault. As a result, we find: (1) regardless of the locking depth 
of the fault, the proposed method reproduces localized strain rates near the fault with almost equal or better accuracy 
than the L2 regularization method (i.e., only the smoothness constraint); (2) the advantage of the proposed method 
over the L2 regularization method is clearer when data coverage is worse (i.e., when fewer observation points are 
available); and (3) the proposed method can be applied when observation errors are small. Next, we apply the pro-
posed method to the GNSS data across the Arima-Takatsuki fault zone, which is one of the most active strike-slip 
faults in Japan. As a result, the proposed method estimates about 1.0× 10

−8/yr faster strain rates near the fault zone 
than the L2 regularization method, which corresponds to a 20–30% greater strain-rate concentration. The faster 
strain rates result in the estimation of a shallower locking depth: 11 km by the proposed method, compared to 17 km 
by the L2 regularization method. The former is closer to the depth of D90, 12–14 km, above which 90% of earth-
quakes occur.
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Graphical Abstract

1  Introduction
Active seismicity and crustal deformation are observed 
in the Japanese Islands. Oceanic plates subduct beneath 
continental plates along the Japan Trench and Nankai 
Trough (Fig. 1), where large interplate earthquakes have 
occurred, such as the 2011 Tohoku-oki earthquake. The 
Japanese Islands also have many active faults, where 
large intraplate earthquakes have occurred, such as the 
2024 Noto Peninsula earthquake (Okuwaki et  al. 2024). 
Besides periodic deformations caused by stick-and-slip 
movements along plate boundaries, the Japanese Islands 
have been significantly deformed over a long period of 
time under the tectonics of E–W compression (e.g., Huz-
ita 1980; Terakawa and Matsu’ura 2010).

Geodetic data provide fundamental information to bet-
ter understand seismic activities and the development of 
geological structures. Since the 1990s, the Global Naviga-
tion Satellite System (GNSS) has enabled us to monitor 
crustal displacements. Today, more than 1300 observa-
tion stations, called the GNSS Earth Observation Net-
work System (GEONET), operated by the Geospatial 
Information Authority of Japan (GSI) are installed all 
over Japan at intervals of about 20 km (Tsuji et al. 2017), 
and the displacement at each station for a certain time 
period can be obtained. Strain, which is the spatial deriv-
ative of displacement, more directly relates to seismic 
activities and the development of geological structures. 
Therefore, estimation of a strain-rate field from spatially 

sporadic geodetic data has been an important problem 
(Sagiya et al. 2000; Okazaki et al. 2021; Nishimura 2022).

Sagiya et  al. (2000) estimated the strain-rate field of 
Japan from GNSS data using the method of Shen et  al. 
(1996), which estimates a velocity field and a strain-rate 
field simultaneously by assuming a local uniformity of a 
strain-rate field; they found a strain-rate concentration 
zone named the Niigata-Kobe Tectonic zone (NKTZ) in 
central Japan (Fig.  1). Probably because the method of 
Shen et al. (1996) is easy to implement, it has been used 
by many studies (e.g., Meneses-Gutierrez and Sagiya 
2016; Nishimura 2017; Fukahata et al. 2020) to estimate 
strain-rate fields. However, the method has some prob-
lems theoretically. It cannot objectively determine the 
parameter called the Distance Decaying Constant (DDC), 
which controls the range of uniformity of a strain-rate 
field, although its value significantly changes estimated 
strain-rate fields. It is also pointed out that the obtained 
strain-rate field does not coincide with the spatial deriva-
tive of the obtained velocity field (Okazaki et al. 2021).

Recently, using a basis function expansion under a 
framework of Bayesian inversion (Fukahata et  al. 1996), 
Okazaki et  al. (2021) estimated the strain-rate field of 
Japan from GNSS data for 4 years from 2006 to 2009. In 
Bayesian inversion, prior information as well as observed 
data is generally used. In Okazaki et  al. (2021), the 
smoothness of the velocity field was used as prior infor-
mation, which was expressed by the minimization of the 
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L2-norm of the spatial derivative of a strain-rate field. 
The optimal weight between the prior information and 
observed data was objectively determined by Akaike’s 
Bayesian Information Criterion (ABIC) (Akaike 1980). 
Using the same method, Fukahata et  al. (2022) further 
estimated strain-rate fields for the periods of 1997–1999 
and 2017–2020. The estimated strain-rate fields have 
higher resolution with reasonable uncertainty in compar-
ison with previous studies including Sagiya et al. (2000). 
However, due to the smoothness constraint on a velocity 
field, we cannot exclude the possibility that the method 
using L2 regularization underestimates strain rates local-
ized in narrow zones such as fault zones, even if we take 
the interval of basis functions to be sufficiently small.

On the other hand, localized strain rates along fault 
zones have been estimated by using a block-fault model 
(Matsu’ura et al. 1986). Nishimura et al. (2018) estimated 
deformation fields by dividing southwest Japan into 14 
blocks based on GNSS data and the surface traces of 
active faults, in which it was assumed that surface defor-
mation of each block is expressed as a sum of rigid block 
motions, uniform deformation, and interseismic elastic 
deformation due to locked faults on block boundaries. 
As a result, localized high slip rates were obtained along 

some active faults including the Arima-Takatsuki fault 
zone (ATFZ) (Fig.  1). However, there is arbitrariness in 
block division, which directly controls obtained results. 
In addition, because internal deformation in each block 
is mapped to block boundaries, the obtained deformation 
on block boundaries tends to be overestimated.

To overcome these difficulties, we introduce sparse 
modeling (compressed sensing) into geodetic data inver-
sion to estimate a strain-rate field. Sparse modeling is a 
technique to effectively obtain characteristic amounts 
even from a small number of observed data. Tibshirani 
(1996) proposed a regression method called least abso-
lute shrinkage and selection operator (LASSO), which is 
a basic type of sparse modeling shrinking many unknown 
model parameters to zero by imposing the minimization 
of the L1-norm of model parameters as a prior constraint. 
As addressed by Zou and Hastie (2005), however, LASSO 
has some limitations: for example, if there is a high cor-
relation among some of variables to be estimated, LASSO 
tends to select only one variable among them and make 
the others zero. Zou and Hastie (2005) proposed a new 
method of sparse modeling called elastic net, which 
imposes the minimization of both the L1-norm and the 
L2-norm of model parameters as prior constraints, mak-
ing a solution smoother than that of LASSO, while keep-
ing sparsity.

Sparse modeling has been typically used in reproduc-
ing images from observed data. For example, Lustig et al. 
(2007) reproduced the distribution of brain blood ves-
sels in high resolution from a smaller number of data 
by applying sparse modeling. Since active faults also 
distribute linearly like brain blood vessels, and the spa-
tial density of GNSS stations is not enough to estimate 
a strain-rate field in high resolution, sparse modeling 
would be a powerful tool to estimate a strain-rate field 
from GNSS data. It should be noted that the interval of 
GNSS stations (about 20  km) is similar to the width of 
the strain concentration zones. In the field of geodetic 
data inversion, Evans and Meade (2012) imposed an 
L1-constraint in estimating the coseismic and afterslip 
distributions of the 2011 Tohoku-oki earthquake. Impos-
ing both the L1- and L2-constraints on a slip distribution, 
Nakata et al. (2016) successfully reproduced an afterslip 
distribution with a sharp boundary by a synthetic test. 
Nakata et al. (2017) and Hori et al. (2018) further applied 
a similar model to observed GNSS data to estimate the 
slip distribution of a slow slip event. Yano and Kano 
(2022) applied an L1 trend filtering to GNSS time series 
in the Nankai subduction zone and detected new 12 slow 
slip event candidates.

In the following, we first formulate a geodetic data 
inversion to estimate a strain-rate field from GNSS data 
using sparse modeling, specifically an elastic net. For 

Fig. 1  Tectonic setting around the Japanese Islands. The thin black 
and gray lines represent the plate boundaries (Bird 2003) and active 
faults (The Geological Survey of Japan, National Institute of Advanced 
Industrial Science and Technology 2023), respectively. The bold black 
line and blue ellipse represent the locations of the Arima-Takatsuki 
fault zone (ATFZ) and the Niigata-Kobe Tectonic Zone (NKTZ), 
respectively. The region of Fig. 7 is shown by the red rectangle. The 
epicenters of the 2011 Tohoku-oki earthquake and the 2024 Noto 
Peninsula earthquake are also shown by green stars
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simplicity, we consider the anti-plane strain problem. 
Next, based on numerical experiments, in which crus-
tal deformation associated with steady slip on a buried 
strike-slip fault is modeled, we show the validity and limi-
tation of the proposed method by comparing the results 
with those of the L2 regularization method. Finally, by 
applying the proposed method to observed GNSS data, 
we estimate a strain-rate profile across the Arima-Takat-
suki fault zone, which is one of the most active strike-slip 
faults in Japan.

2 � Method
2.1 � Geometry of anti‑plane strain problem
In the synthetic test (Sect.  3), we consider an anti-plane 
strain problem, for simplicity. The setting of the anti-plane 
strain problem is explained in this subsection. In the anti-
plane strain problem, surface displacements are associated 
with a steady slip on a buried strike-slip fault whose length 
is infinite in the directions of the fault strike and the depth 
(Fig. 2). The y-axis is taken along the fault strike, and the x
-axis is perpendicular to it. We consider surface displace-
ments to the y-direction along the x-axis. As shown in 
Fig. 2, we assume the fault plane is locked from the surface 
to depth D and a steady slip occurs at a rate of s below this 
locking depth. The solution for the surface displacement in 
this setting is given by Savage and Burford (1970). In addi-
tion to this buried fault motion, we assume that the veloc-
ity profile has a uniform spatial gradient µ along the x-axis 

considering factors such as plate subduction. Then, the true 
value of surface velocity v(x) and shear strain rate ė(x) are 
given as:

We place N  observation points on the x-axis with an 
approximately constant interval A(= 160/N ) (Fig.  2). Let 
x = (x1, . . . , xN )

T be a vector containing the coordinates 
of observation points. The velocity data at these points are 
expressed as:

where we assume ε follows a Gaussian noise with mean 0 
and variance σ 2

I.

2.2 � Estimation of a strain‑rate field with L2 regularization
First, we explain a method to estimate a strain-rate field 
based on the basis function expansion with ABIC, in which 
only an L2 regularization is imposed as a prior constraint 
(Yabuki and Matsu’ura 1992; Fukahata et al. 1996; Okazaki 
et al. 2021).

We express the velocity field v(x) as a linear combination 
of a set of basis functions {φk(x)}Mk=1:

where ak is a model parameter to be estimated from 
observed data and M is the number of model param-
eters. Using the model velocity field (Eq. 4) and observed 
velocities (Eq.  3), we obtain the following observation 
equation:

(1)v(x) =
s

π
tan−1

( x

D

)
+ µx,

(2)ė(x) =
1

2

dv

dx
=

sD

2π

1

x2 + D2
+

µ

2
.

(3)d = (v1, . . . , vN )
T
=

s

π
tan

−1
(
x

D

)
+ µx + ε,

(4)v(x) =

M∑

k=1

akφk(x),

Fig. 2  Settings of an anti-plane strain problem. We consider a buried 
vertical strike-slip fault, whose length is infinite in the directions 
of the fault strike and depth. The fault slips at a constant rate s 
below the locking depth D . The y-axis is set along the fault strike, 
and the x-axis is perpendicular to it. We consider the surface 
velocity to the y direction along the x-axis, v(x) . A is the interval 
between observation points

Fig. 3  Functional form of cubic B-splines, which are used as basis 
functions in this analysis. At the boundaries of the model region, 
the cubic B-splines are truncated
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where a = (a1, . . . , aM)T, is the model parameter vector, 
and e is the residual between the model and observed 
velocities; e is assumed to follow a Gaussian distribution 
e ∼ N

(
0, σ 2

e I
)
 , where σ 2

e  is an unknown scale of errors 
and I is the N × N  unit matrix. The matrix H is expressed 
by the values of φk as:

Cubic B-splines, defined below, are used as the 
basis functions (de Boor 1972; Cox 1972; Yabuki and 
Matsu’ura 1992):

with

where L is the interval of basis functions (Fig.  3), M 
equals to K + 3 , and [xmin, xmax] corresponds to the 
model region. Following Okazaki et  al. (2021), the basis 
functions are truncated at the boundaries of the model 
region (Fig. 3).

Under the assumption that velocity fields should 
change smoothly in space, we impose smoothness con-
straint as the prior constraint, which is expressed by 
the L2-norm of the second derivatives of the velocity 
field. The objective function for the L2 regularization is 
expressed as:

where the matrix Hxx is composed of the second deriva-
tives of the basis functions as:

with

(5)d = Ha + e,

(6)H ≡




φ1(x1) · · · φM(x1)

...
. . .

...
φ1(xN ) · · · φM(xN )



.

(7)
φk (x) =

1
6L3

×






(x − xk + 2L)3, xk − 2L ≤ x ≤ xk − L

−3(x − xk )3 − 6L(x − xk )2 + 4L3, xk − L ≤ x ≤ xk
3(x − xk )3 − 6L(x − xk )2 + 4L3, xk ≤ x ≤ xk + L

−(x − xk − 2L)3, xk + L ≤ x ≤ xk + 2L
0, x < xk − 2L or xk + 2L < x

(8)xk = xmin + (k − 2)L, k = 1, 2, . . . ,K + 3,

(9)K =

xmax − xmin

L
,

(10)s(a;β) = (d −Ha)T(d −Ha)+ βaTRa

= (d −Ha)T(d −Ha)+ β�Hxxa�
2
2,

(11)Hxx ≡




φxx
1 (x1) · · · φxx

M (x1)
...

. . .
...

φxx
1 (xN ) · · · φxx

M (xN )



,

The first term of the right-hand side of Eq.  (10) rep-
resents the residual sum of squares (RSS) between the 
estimated and observed velocities and the second term 
represents the smoothness constraint. The explicit 
expression of R is given in the Appendix of Nozue and 
Fukahata (2022). β is a hyperparameter that controls the 
weight of the smoothness constraint relative to the RSS. 
Given β , the model parameter is obtained by minimizing 

Eq. (10) as:

The optimal value of β can be objectively determined 
by minimizing ABIC (Akaike 1980). In this case, ABIC is 
expressed as follows (Yabuki and Matsu’ura 1992; Oka-
zaki et al. 2021):

where P is the rank of R . Substituting the optimal value 
of β into Eq.  (13), the optimal model parameters are 
obtained.

2.3 � Introduction of sparse modeling
Next, we explain the new method to estimate a strain-
rate field introducing sparse modeling. Considering 
that a strain-rate field is smooth in most areas, but can 
change abruptly in a narrow zone such as a fault zone, 
we apply both the sparsity constraint and the smooth-
ness constraint on strain rates, which are expressed by 
the L1-norm and the L2-norm of the second derivatives 
of the velocity field, respectively. Then, the objective 
function to be minimized is expressed as:

(12)

φxx
k (x) ≡

∂2φk
∂x2

(x)

=
1
L3

×






x − xk + 2L, xk − 2L ≤ x ≤ xk − L
−3(x − xk )− 2L, xk − L ≤ x ≤ xk
3(x − xk )− 2L, xk ≤ x ≤ xk + L
−(x − xk − 2L), xk + L ≤ x ≤ xk + 2L
0, x < xk − 2L or xk + 2L < x

(13)â =

(
H

T
H+ βR

)
−1

H
T
d.

(14)
ABIC(β) = (N + P −M) log s(a;β)

− P log β + log
∣∣∣HTH+ βR

∣∣∣+ C ,
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where ‖Hxxa‖1 and ‖Hxxa‖2 are the L1-norm and the 
L2-norm of Hxxa , respectively. α and β are the hyper-
parameters that control the weights of the sparsity con-
straint and the smoothness constraint relative to the RSS, 
respectively. Since we consider an anti-plane strain prob-
lem, Eq. (15) can be written as:

To determine the optimal values of the hyperparame-
ters (α,β) =

(
α̂, β̂

)
 , we use the method of leave-one-

out cross-validation (LOOCV) (e.g., Stone 1974; 
Geisser 1975). For fixed values of (α,β) and the velocity 
data at N − 1 observation points, where the data at the 
n-th observation point ( x = xn ) is excluded, the objec-
tive function is defined as:

Here, the solution of model parameter vector an that 
minimizes En(a;α,β) is obtained by the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) method described 
later. Using an , we compute the squared residual rn 
between the observed and the calculated velocities at 
x = xn . We calculate rn for all n (1,2, . . . ,N ) , and sum up 
them to obtain the evaluation function of LOOCV:

In minimizing E(a;α,β) and En(a;α,β) , we use the 
BFGS method (Broyden 1970; Fletcher 1970; Goldfarb 
1970; Shanno 1970), which is one type of quasi-New-
ton method: an algorithm to find the minimum point 
of objective functions in nonlinear optimization prob-
lems. The descent direction for unknown parameters 
is determined by the approximation to the Hessian 
matrix, which is generated by the second derivatives of 
the objective function. Unknowns are updated in the 
descent direction and then a new approximate matrix 
of the Hessian is calculated. This calculation is repeated 
until the gradient of the objective function becomes 
sufficiently small. However, since the problem is 

(15)E(a;α,β) = (d −Ha)T(d −Ha)

+ α�Hxxa�1 + β�Hxxa�
2
2

(16)
E(a;α,β) =

N�

i=1



vi −

M�

j=1

Hijaj




2

+ α

�
������

M�

j=1

aj
d2φj

dx2
(x)

������
dx + β

�





M�

j=1

aj
d2φj

dx2
(x)






2

dx.

(17)
En(a;α,β) =

N�

i �=n



vi −

M�

j=1

Hijaj




2

+ α

�
������

M�

j=1

aj
d2φj

dx2
(x)

������
dx+β

�





M�

j=1

aj
d2φj

dx2
(x)






2

dx.

(18)r(α,β) ≡

N�

n=1

rn =

N�

n=1



vn −

M�

j=1

Hnja
n
j




2

.

nonlinear, obtained solutions may differ depending on 
the initial values of model parameters. In this study, for 
simplicity, the zero vector is used as the initial values of 
model parameters.

3 � Synthetic tests
3.1 � Setting of synthetic tests
To confirm the validity and limitations of the proposed 
method, we conduct numerical experiments on the anti-

plane problem, explained in Sect. 2.1 and Fig. 2. We set 
the model area from − 80 km to 80 km along the x-axis. 
Because the basis functions (cubic B-splines; Eq.  7) are 
placed with the interval of L = 5 km and truncated at the 
edge of the profile (Fig. 3), the number of basis functions 
is M = 35.

In the following, we calculate r(α,β) by changing the 
values of the hyperparameters within the ranges of 

10−4
≤ α ≤ 102 and 100 ≤ β ≤ 104 with 100.25 grid spac-

ing both for α and β (e.g., Figure S1). Here, the problem is 
how to determine the optimal pair of the hyperparameter 
values. Smaller r(α,β) generally gives a better pair of the 
hyperparameters. However, it should be noticed that the 
global minimum of r(α,β) does not always give the opti-
mal solution, because Eq.  (15) is a nonlinear equation. 
For example, Sato et al. (2022) showed that maximum a 
posteriori (MAP) of the joint posterior probability of the 
hyperparameters and model parameters often gives an 
inappropriate solution; instead, the minimum of ABIC, 
which is calculated by the integration of the joint poste-
rior probability with respect to the model parameters, 
gives the optimal solution. This means that an operation 
taking an average is effective in obtaining an appropriate 
solution. Therefore, in this study, we apply a moving aver-
age filter to r(α,β) in obtaining the optimal pair of hyper-
parameters. Specifically, we calculate the average value of 
r(α,β) for the pairs of hyperparameters 

(
α′,β ′

)
 within the 
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range of 
∣∣log10α − log10α

′

∣∣
+

∣∣log10β − log10β
′

∣∣
≤ 0.75 , 

and determine the optimal pair of the hyperparameters (
α̂, β̂

)
 that minimizes this average value. Once we obtain 

the optimal hyperparameters 
(
α̂, β̂

)
 (Figures  S1-S3), we 

can estimate the optimal model parameters â by mini-
mizing E

(
a; α̂, β̂

)
 . By substituting â into Eq.  (4), the 

velocity profile is obtained, and by differentiating it with 
respect to x , the strain-rate profile is also obtained.

In the synthetic tests, we change the parameters D,A, 
and σ to generate the velocity data, while fixing the steady 
slip rate and the spatial velocity gradient to s = 5 mm/yr 
and µ = 1.0× 10−8/yr , respectively. Table 1 summarizes 
the list of parameters for synthetic tests with the optimal 
values of the hyperparameters (Figures S1–S3).

3.2 � Dependence on the locking depth
We compare the results for the cases with different val-
ues of locking depth D = 5 km, 10 km, and 20 km (Fig. 4), 
while observation interval A and observation error σ are 
fixed to 10  km and 0  mm/yr, respectively. As shown in 
Eq.  (2), a smaller value of D results in a narrower strain 
concentration zone. In the case of D = 5  km, the peak 

Table 1  List of parameters for synthetic tests and optimal values 
of the hyperparameters

The values of the hyperparameters ( ̂α, β̂  ) for the proposed method and β̂L2 
for the L2 regularization method are shown. D : locking depth, A : observation 
interval, σ : observation error

D
(
km

)
A(km) σ(mm/yr) log10α̂ log10β̂ log10β̂L2

5 10 0.0 − 2.00 0.75 1.75

20 − 1.25 2.50 3.50

10 10 − 3.25 0.75 − 5.00

20 − 3.25 1.75 2.75

20 10 − 3.25 0.75 − 5.00

20 − 3.25 1.50 − 5.00

10 10 0.1 0.00 2.00 2.25

0.2 0.25 2.25 2.50

0.4 0.25 2.75 3.25

Fig. 4  Dependence of the estimated velocity (left) and strain-rate (right) profiles on the locking depth D of 5 km (top), 10 km (middle), and 20 km 
(bottom). Results of the proposed method and the L2 regularization method, and the true profiles are shown by the red, blue, and black lines, 
respectively. Observed velocities (left) and observation points (right) are also plotted by the small black circles. The observation interval A 
and the observation error σ are fixed to 10 km and 0 mm/yr, respectively
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strain rate estimated by the proposed method is about 
20% larger than that by the L2 regularization, although 
it is still about 20% smaller than the true one. The esti-
mation accuracy near the fault is clearly improved by the 
proposed method. On the other hand, for D = 10 km and 
20  km, in which the strain concentration near the fault 
is weaker, both the proposed method and the L2 regu-
larization method reproduce the peak strain rates almost 
perfectly, although the latter is slightly (a few percents) 
better in the recovery ratio of the true peak value (Fig-
ure S4). In brief, the proposed method achieves almost 
equivalent or higher accuracy than the L2 regularization 
method, whether the strain concentration zone is wide or 
narrow.

3.3 � Dependence on the observation interval
We compare the strain-rate profiles for the cases with 
A = 10  km and 20  km, while D is changed to 5  km, 
10  km, and 20  km with σ = 0  mm/yr (Fig.  5). In gen-
eral, fewer observation points result in a larger weight 
of the prior constraint in the objective function. When 

A = 10  km, the proposed method estimates the peak 
strain rate larger than the L2 regularization method 
for the case of D = 5  km, while both methods estimate 
almost the same peak values for the cases of D = 10 km 
and 20 km as described in Sect. 3.2. On the other hand, 
when A = 20  km, the proposed method estimates larger 
peak strain rates than the L2 regularization method for 
the cases not only for D = 5  km  but  also for D = 10  km. 
This suggests that the proposed method shows higher 
performance than the L2 regularization under the worse 
condition that fewer observation points are available. For 
reference, we investigate the cases with different values of 
D (5 km–20 km) (Figure S4). The superiority of the pro-
posed method against the L2 regularization method is 
clearer for A = 20 km than for A = 10 km, although the L2 
regularization method shows slightly better performance 
than the proposed method for the cases of larger D . In 
brief, the proposed method shows better performance 
when the data coverage is worse (larger A) and the strain 
concentration zone is narrower (smaller D).

Fig. 5  Dependence of the estimated strain-rate profiles on the observation interval A of 10 km (left) and 20 km (right), where the locking depth D 
is also changed to 5 km (top), 10 km (middle), and 20 km (bottom). Results of the proposed method and the L2 regularization method, and the true 
profiles are shown by the red, blue, and black lines, respectively. Locations of observation points are also plotted. The observation error σ is fixed 
to 0 mm/yr. The left column of this figure is the same as the right column of Fig. 4
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3.4 � Dependence on observation errors
We compare the profiles for the cases with σ = 0.1mm/yr,

0.2mm/yr, and 0.4mm/yr, while fixing D = 10  km and 
A = 10  km (Fig.  6). For the cases of σ = 0.1mm/yr and

0.2mm/yr, the proposed method estimates almost the 
same values of the strain rates near the fault as the L2 
regularization method does. However, the strain-rate 
profiles estimated by the proposed method show smaller 
variations far from the fault than those by the L2 regu-
larization method. On the other hand, for the case of 
σ = 0.4mm/yr , both methods estimate the strain-rate 
profiles quite different from the true profiles, particularly 
for the range of x ≤ −50 km. In summary, the proposed 
method is applicable effectively if observation errors are 
small.

4 � Application to Arima‑Takatsuki fault zone
4.1 � GNSS data and analysis domain
We apply the proposed method to GNSS velocity data 
across the Arima-Takatsuki fault zone (ATFZ), and com-
pare the results by the L2 regularization method. ATFZ, 

which is located in central Japan, is a group of right-lat-
eral strike-slip faults (Fig.  7). ATFZ is one of the most 
active strike-slip faults in Japan. In the eastern part of 
this fault zone, at least 3 large inland earthquakes have 
occurred in the last 3000  years: about B.C. 1000, A.D. 
700–1300, and 1596 (e.g., The Headquarters for Earth-
quake Research Promotion 2001). The fault slip of each 
earthquake was estimated at up to 3 m. Because this fault 
zone is located inland, we can take a relatively long pro-
file and use many observation stations. Therefore, we 
apply the proposed method to GNSS data across this 
fault zone.

The active faults composing ATFZ generally have 
a strike of N70°–80° E with a dip of about 90° (e.g., 
The Geological Survey of Japan, National Institute of 
Advanced Industrial Science and Technology 2023). As 
shown in Fig. 7, we take the x-axis (blue line) perpendic-
ular to ATFZ (red line). The origin of the x-axis, (135.42° 
E, 34.83° N), is the intersection of the blue and red lines. 
The x-axis is oriented to N10° W with the positive direc-
tion southward.

Fig. 6  Dependence of the estimated velocity (left) and strain-rate profiles (right) on the observation error σ of 0.1 mm/yr (top), 0.2 mm/yr 
(middle), and 0.4 mm/yr (bottom). Results of the proposed method and the L2 regularization method, and the true profiles are shown by the red, 
blue, and black lines, respectively. Observed velocities (left) and observation points (right) are also plotted. Both the observation interval A 
and the locking depth D are fixed to 10 km
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Along the x-axis from x = −80 km to x = 80 km, there 
are 11 GNSS stations operated by the GSI within 10 km 
from the x-axis (Fig. 7). For these stations, we estimated 
average velocities in the fault-perpendicular direction by 
the following method: (1) we obtained the daily coordi-
nates of the F5 solution (Takamatsu et  al. 2023), based 
on the International Terrestrial Reference Frame (ITRF) 
2014 (Altamimi et al. 2016). The data used in the analy-
sis spans from January 2001 to December 2010, except 
for the data at one station where data are available from 
March 2003 due to the timing of its installation. The end 
of the data period was set to avoid the effect of the 2011 
Tohoku-oki earthquake. (2) Following the procedure of 
Sagiya et al. (2000), the obtained daily coordinates at each 
station are fitted by the least-square method with the 
functions of a linear trend, annual and semiannual sinu-
soidal components, and coordinate offsets due to large 
earthquakes ( Mj ≥ 6.0 ) and the equipment maintenance 

(Figure S5), and then the coefficient of the linear trend is 
used as the velocity component (black vectors in Fig. 7). 
Here, Mj stands for the magnitude determined by the 
Japan Meteorological Agency (JMA). The standard devia-
tion of observation errors, evaluated by the procedure of 
Dixon et  al. (2000), is less than 0.2  mm/yr at every sta-
tion, reflecting a relatively long observation period. Since 
we consider the anti-plane strain problem, each observa-
tion point is projected onto the x-axis, and the fault par-
allel velocity is used in the analysis.

4.2 � Results
Applying the proposed method to GNSS data, we esti-
mate the strain rate across ATFZ, and compare the result 
by the L2 regularization method. The distribution of the 
values of r(α,β) , calculated by the LOOCV procedure, 
is shown in Figure S6 together with the ABIC curve for 
the L2 regularization method. The optimal values of the 
hyperparameters are α̂ = 100.25, β̂ = 102.75 for the pro-
posed method and β̂ = 103.25 for the L2 regularization 
method. Using these values, we estimate the velocity and 
strain-rate profiles. The location of the peak strain rate 
is almost the same for both methods. As expected from 
the synthetic tests, however, we obtain a sharper peak 
of strain rates by the proposed method than by the L2 
regularization method. The estimated peak strain rate is 

Fig. 7  Horizontal velocities at GEONET stations 
across the Arima-Takatsuki fault zone used in this study. The 
velocities are shown with respect to the reference point (‘960640’; 
black star). The x-axis (blue line) is taken to be perpendicular 
to the strike of the Arima-Takatsuki fault zone (red line), the location 
of which is taken to be x = 0 . GEONET stations within 5 km (circles) 
and 5–10 km (squares) from the x-axis are shown. Active faults are 
shown by gray lines

Fig. 8  Estimated velocity profile (top) and strain-rate profile (bottom) 
across the Arima-Takatsuki fault zone. The results of the proposed 
method (red) and the L2 regularization method (blue) are presented. 
The locations of observation points within 5 km (circles) and 5–10 km 
(squares) from the x-axis are also shown
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78× 10−9/yr for the proposed method and 69× 10−9/yr 
for the L2 regularization method; the difference is about 
10× 10−9/yr (Fig.  8). Since the strain rates in the sur-
rounding area are 35× 10−9/yr ( x = −80  km) and 
13× 10−9/yr ( x = 80 km), the increase of the strain rate 
around the fault zone from the surrounding area is about 
20–30% larger by the proposed method than by the L2 
regularization method. This example indicates that the 
proposed method works well in estimating localized high 
strain rates.

From the obtained strain-rate profiles, we estimate the 
locking depth D and the steady slip rate s of the fault by 
fitting to the crustal deformation model expressed by 
Eq. (2), though it is slightly modified to:

where xpeak is the location of the peak strain rate. For 
simplicity, we fix µ to 5.0× 10−8/yr, near the average 
value of the strain rates at x = − 80  km and x = 80  km, 
and xpeak to 5.8 km for the proposed method and 5.2 km 
for the L2 regularization method, respectively. By mini-
mizing the value of RSS between the estimated strain 
rates and analytical values (Eq.  19) in the range of 
xpeak − 40 ≤ x ≤ xpeak + 40 km, we obtain the optimal 
values of D and s as 11 km and 4 mm/yr for the proposed 
method, while 17  km and 5  mm/yr for the L2 regulari-
zation. The steady slip rate estimated by the proposed 
method is realistic; the slip of 4  mm/yr reaches 3  m, 
the coseismic slip in each large earthquake, in about 
800  years, which is comparable to the intervals of his-
torical earthquakes (The Headquarters for Earthquake 
Research Promotion 2001). According to seismological 
studies (e.g., Ito and Nakamura 1998; Omuralieva et  al. 
2012), D90, above which 90% of earthquakes occur, is 
12–14 km around ATFZ. This suggests that the proposed 
method estimates a more realistic locking depth than the 
L2 regularization.

5 � Discussion and conclusions
It has been difficult to accurately estimate localized strain 
rates around a fault zone from GNSS data. To overcome 
this difficulty, we newly introduced sparse modeling. By 
using the objective function with the L1-norm and the 
L2-norm regularization terms, we imposed both the 
sparsity constraint and the smoothness constraint on 
strain rates as prior information.

In synthetic tests, we considered an anti-plane strain 
problem due to a steady slip on a buried strike-slip 
fault, for simplicity. As a result, we found the follow-
ing: (1) the proposed method shows almost equal or 

(19)ė(x) =
1

2

dv
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sD

2π

1
(
x − xpeak

)2
+ D2

+

µ

2
,

better performance than the L2 regularization method 
regardless of the locking depth (Fig. 4). (2) The advan-
tage of the proposed method over the L2 regularization 
method becomes clearer under the worse condition 
that fewer observation points are available (Fig.  5). In 
brief, the proposed method shows better performance 
when the data coverage is worse and the strain concen-
tration zone is narrower.

We also found (3) the proposed method is applicable 
if observation errors of velocity data are small, but it 
does not work well for cases with large errors (Fig. 6). 
Of course, the acceptable error level depends on the 
magnitude of the signal; for faster strain-rate concen-
tration, larger errors are acceptable. The noise sensi-
tive behavior of the proposed method is probably due 
to a famous trade-off between the model resolution 
and accuracy in inversion analyses (Backus and Gilbert 
1970). Because the proposed method enhances the res-
olution of a strain-rate field, estimation errors tend to 
be larger.

The proposed method was applied to GNSS veloc-
ity data across ATFZ. The proposed method estimates 
about 20–30% larger value of the increase of the strain 
rate around the fault zone from the surrounding area 
than the L2 regularization method (Fig.  8). Addition-
ally, a more realistic locking depth is estimated by the 
proposed method than by the L2 regularization.

It should be noted that the proposed method is 
developed to detect strain-rate concentration. In 
other words, the method can be applicable, even if the 
strain-rate profile does not follow an arctangent model 
in the anti-plane strain problem (Eq.  3). For exam-
ple, the strain-rate profile estimated by the proposed 
method deviates from the arctangent model (Fig.  8), 
although we fitted an arctangent model to it for easy 
comprehension.

As shown in this paper, the proposed method exhibits 
a high performance in estimating localized strain rates. 
However, since the velocity component perpendicular to 
the fault strike is ignored, the effectiveness of the method 
is limited. In the future, we plan to extend the proposed 
method to two-dimensional cases. Through this improve-
ment, it is expected we can obtain strain-rate fields more 
precisely, which will lead to useful knowledge for proba-
bilistic forecasts of earthquakes and understanding of the 
development of geological structures.
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