Remote sensing-based Water Hyacinth monitoring using the novel Aquatic Macrophyte Index (AMI)

Promotor Supervisor PhD candidate Daphne van der Wal Marloes Penning de Vries Finn Münch f.b.munch@utwente.nl

Content

Introduction

- 1. Remote sensing sensor options
 - 1.1. Radar
 - 1.2. Multispectral
 - 1.3. Hyperspectral
- 2. Detection of aquatic macrophytes and phytoplankton
 - 2.1. Radar2.2. Multispectral
- 3. Field surveillance
 - 3.1. Uncrewed Aerial Vehicle (UAV)
 - 3.2. Spectroradiometer (ASD FieldSpec or TriOS RAMSES)
 - 3.3. Fluorometer (bbe moldaenke FluoProbe)

Shades of water

Figure 1. The diversity of watercolors (Stevens et al. 2022).

1. Remote Sensing sensor options

Figure 2. Absorption and scattering processes in the atmosphere and hydrosphere (Dörnhöfer & Oppelt, 2016).

Active Remote Sensing

• Radar (Backscatter)

Figure 3. Sentinel-1 C-SAR band on the electromagnetic spectrum (NASA 2024).

Passive Remote Sensing • Multispectral Visible & Infrared (Reflectance) in 12 spectral bands

Figure 4. Sentinel-2 MSI bands on the electromagnetic spectrum (FU Berlin 2024).

Passive Remote Sensing

 Hyperspectral Visible & Infrared (Reflectance) in 246 spectral bands

VNIR:	8.1 +/- 1 nm
SWIR:	12.5 +/- 1.5 nm

Figure 5. Sentinel-2 MSI & EnMAP bands on the electromagnetic spectrum (DLR et al. 2022).

Passive Remote Sensing

 Multispectral Visible & Infrared (Reflectance) in 12 spectral bands

Figure 4. Sentinel-2 MSI bands on the electromagnetic spectrum (FU Berlin 2024).

Optically active water components

Figure 2. Absorption and scattering processes in the atmosphere and hydrosphere (Dörnhöfer & Oppelt, 2016).

Optically active water components

Figure 2. Absorption and scattering processes in the atmosphere and hydrosphere (Dörnhöfer & Oppelt, 2016).

2. Detection of aquatic macrophytes and phytoplankton

Active Remote Sensing

• Radar (Backscatter)

Figure 8. Lake Chivero backscatter captured by Sentinel-1 C-SAR (2021-06-05 16:23 GMT).

• Visible & Infrared (Reflectance)

Figure 9. Lake Chivero multispectral reflectance captured by Sentinel-2 MSI (2021-06-05 08:15 GMT).

OF TWENTE.

Active Remote Sensing

• Radar (Backscatter)

Figure 10. Thematic map of aquatic macrophyte and water based on Sentinel-1 C-SAR (2021-06-05 16:23 GMT)

• Visible & Infrared (Reflectance)

Figure 11. Thematic map of aquatic macrophyte and water based on Sentinel-2 MSI (2021-06-05 08:15 GMT)

Aquatic Macrophyte Index (AMI)

$$AMI = \rho_{SWIR1} - \left(\rho_{Green} + (\rho_{SWIR2} - \rho_{Green}) \times \left(\frac{\lambda_{SWIR1} - \lambda_{Green}}{\lambda_{SWIR2} - \lambda_{Green}}\right)\right)$$

UNIVERSITY

OF TWENTE.

Figure 12. Spectral signatures captured at Lake Chivero by Sentinel-2 MSI (2017-08-25). Where yellow vertical bars | indicate the spectral bands of interest for the AMI computation. Orange dashed lines --- illustrate the interpolation between the Green and SWIR2 band. AM = Aquatic Macrophyte, PHY = Phytoplankton, H2O = Water (Münch et al. in preparation).

AMI & FAI application at Lake Chivero in June 2023

Figure 13. AMI & FAI based classification Sentinel-2 (2023-06-05).

AMI & FAI application at Lake Chivero in June 2023

Figure 13. AMI & FAI based classification Sentinel-2 (2023-06-05).

Figure 14. AMI & FAI based classification Sentinel-2 (2023-06-10). Figure 15. AMI & FAI based classification Sentinel-2 (2023-06-15) Figure 16. AMI & FAI based classification Sentinel-2 (2023-06-20)

Figure 17. AMI & FAI based classification Sentinel-2 (2023-06-25) Figure 18. AMI & FAI based classification Sentinel-2 (2023-06-30)

3. Field surveillance

Uncrewed Aerial Vehicle (UAV)

DJI Mavic 3M

Figure 22. DJI Mavic 3M (DJI 2025).

Spectral bands: 5 MP Multispectral Camera

Figure 23. DJI Mavic 3M sensors (DJI 2025).

Spectroradiometer

TriOS RAMSES

- 256 spectral channels
- Spectral range: 320 950 nm

Figure 19. TriOS RAMSES ARC VIS (TriOS Mess- und Datentechnik GmbH 2025)

ASD FieldSpec

- VIS (3 nm), IR (10 nm)
- Spectral range: 350 2500 nm

Figure 20. ASD FieldSpec 3 (ASD Inc. 2010).

Figure 3. Sentinel-2 MSI bands on the electromagnetic spectrum (FU Berlin 2024).

Fluorometer

bbe moldaenke FluoroProbe

Measurands:

Figure 21. Biological biophysical engineering (bbe) moldaenke FluoroProbe (bbe moldaenke GmbH 2025). total chlorophyll [µg chl-a/l] concentration of green algae [µg chl-a/l] concentration of cyanobacteria [µg chl-a/l] concentration of diatoms/brown algae [µg chl-a/l] concentration of cryptophytes [µg chl-a/l] fingerprints of classes/species, also user-defined (e.g. Planktothrix rubescens) [µg chl-a/l] yellow substances (CDOM) depth temperature (optional) transmission (optional)

For more information contact: f.b.munch@utwente.nl

Promotor Supervisor PhD candidate Daphne van der Wal Marloes Penning de Vries Finn Münch

References for this presentation

- ASD Inc. (2010). FieldSpec[®] 3 User Manual. <u>https://www.geo-informatie.nl/courses/grs60312/material2017/manuals/600540-jfieldspec3usermanual.pdf</u>.
- bbe moldaenke GmbH (2025). FluoroProbe. <u>https://www.bbe-moldaenke.de/en/products/chlorophyll/details/fluoroprobe.html</u>.
- Dierssen, H. M., Gierach, M., Guild, L. S., Mannino, A., Salisbury, J., Schollaert Uz, S., ... & Werdell, P. J. (2023). Synergies between NASA's hyperspectral aquatic missions PACE, GLIMR, and SBG: Opportunities for new science and applications. Journal of Geophysical Research: Biogeosciences, 128(10), e2023JG007574.
- DJI (2022). DJI MAVIC 3 M User Manual. <u>https://dl.djicdn.com/downloads/DJI_Mavic_3_Enterprise/20221216/DJI_Mavic_3M_User_Manual-EN.pdf.</u>
- DJI (2025). Mavic 3 Multispectral Edition. <u>https://ag.dji.com/mavic-3-m</u>.
- DLR, GFZ Potsdam, OHB System AG, Trier University (2022). EnMAP Mission and Instrument Overview. https://www.enmap.org/data/doc/Web_Flyer_EnMap_2022_10_eng.pdf.
- Dörnhöfer, K., & Oppelt, N. (2016). Remote sensing for lake research and monitoring Recent advances. *Ecological Indicators*, 64, 105–122. <u>https://doi.org/10.1016/j.ecolind.2015.12.009</u>.
- FU Berlin (2024) Sentinel-2. <u>https://blogs.fu-berlin.de/reseda/sentinel-2/</u>.
- NASA (2024) What is Synthetic Aperture Radar. <u>https://www.earthdata.nasa.gov/learn/backgrounders/what-is-sar</u>.
- Sentinel-1 SAR and Sentinel-2 MSI imagery courtesy of the European Space Agency, E.U. Copernicus program and Google Earth Engine.
- Stevens, J., Voiland, a., USGS & NASA (2022) A Trio of Ethiopian Lakes. <u>https://earthobservatory.nasa.gov/images/150449/a-trio-of-ethiopian-lakes</u>.
- Stumpf, R. P., Davis, T. W., Wynne, T. T., Graham, J. L., Loftin, K. A., Johengen, T. H., Gossiaux, D., Palladino, D., & Burtner, A. (2016). Challenges for mapping cyanotoxin patterns from remote sensing of cyanobacteria. Harmful Algae, 54, 160–173. https://doi.org/10.1016/j.hal.2016.01.005.
- TriOS Mess- und Datentechnik GmbH (2025). RAMSES. <u>https://trios.de/en/ramses/</u>.

References for the EGU25 poster

- BioRender. (2025). Cyanobacteria Structure. https://www.biorender.com/template/cyanobacteria-structure.
- EC JRC, & Google. (n.d.). JRC Global Surface Water Mapping Layers, v1.4 | Earth Engine Data Catalog [Dataset]. Retrieved March 12, 2025, from https://developers.google.com/earth-engine/datasets/catalog/JRC_GSW1_4_GlobalSurfaceWater.
- ESA, & ATG medialab. (2014). Sentinel-2: High-resolution and multispectral. https://www.esa.int/ESA_Multimedia/Images/2014/07/Sentinel-2_high-resolution_and_multispectral.
- Gao, B. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. *Remote Sensing of Environment*, 58(3), 257–266. <u>https://doi.org/10.1016/S0034-4257(96)00067-3</u>.
- Hu, C. (2009). A novel ocean color index to detect floating algae in the global oceans. *Remote Sensing of Environment*, 113(10), 2118–2129. <u>https://doi.org/10.1016/j.rse.2009.05.012</u>.
- Landsat 8 and Landsat 9 imagery courtesy of NASA, USGS and Google Earth Engine.
- Oyama, Y., Matsushita, B., & Fukushima, T. (2015). Distinguishing surface cyanobacterial blooms and aquatic macrophytes using Landsat/TM and ETM + shortwave infrared bands. *Remote Sensing of Environment*, 157, 35–47. https://doi.org/10.1016/j.rse.2014.04.031.
- Pngtree. (2021). Water Hyacinth. https://pngtree.com/freepng/water-hyacinth-picture-material_6225161.html.
- Sentinel-1 SAR and Sentinel-2 MSI imagery courtesy of the European Space Agency, E.U. Copernicus program and Google Earth Engine.

