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•Estimates assimilation uncertainty
•Used in the production of reanalysis
data (ERA5; [1])

•Ensemble member perturbation
scaled by observation uncertainty
(instrument-dependent)

•Perturbation propagated by model
uncertainty (state-dependent)

•Ensemble spread = assimilation
uncertainty = observation uncer-
tainty + model uncertainty

Can we isolate model uncer-
tainty (short timescales) from
observation uncertainty (long
timescales)?
•Focus on North Atlantic g500 since
observational record is long and
synoptics well-researched

1: Ensemble Data Assimilation (EDA)

Abrupt changes in the observation system introduce discontinuities. Change
Point (CP) detection is a standard method in statistics [2]. Predicted: logarithmic
ensemble variance, predictors: year and season. The following CPs minimize
the Bayesian Information Criterion (BIC; 99% confidence intervals shaded).
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2: Change Points in Observation Uncertainty
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•Using change points from → 2
•One set of coefficients (year and season) for
each segment

•One linear statistical model per grid point [3]
•Daily data
Statistical models account for substantial
amount of variability. Uncertainty used to
be largest in Arctic/Northern Atlantic, now
rather evenly spread. Radj
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3: Grid-Point-Wise Observation Uncertainty
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•Weather Regimes from
[4]; green contours show
𝑧 every 100 gpdm

•Red-blue shading shows
composite mean resid-
ual (model uncertainty)
obtained from the statis-
tical models from → 3

•Only grid points with
false discovery rate
(FDR)-adjusted [5] p-
value < 5% according
to 10,000 permutation
tests on the regime life
cycle series are shown

High pressure/blocked regions are associated with decreased model uncertainty. Increased model uncertainty espe-
cially at large gradients and jet exits.

4: Weather Regimes Uncertainty
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•Understand patterns and find processes responsible for higher/lower model
uncertainty

• Investigate other variables and other layers; especially w.r.t. moist processes
•Estimate model uncertainty using more complex (smooth) statistical models
•Understand (regionally varying) seasonal cycle of observation uncertainty

5: Outlook
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